RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Schematics and Symbols

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

NUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

What are Symbols ?

- Very often, a circuit (schematic) can be re-used.
- Instead of copying everything, we can 'include' the schematic into another schematic
- In order to identify the nets, we need a symbol
 - This is a new *view* type

- View	
View 💫 Lor	sk Size
layout	17k
schematic	30k
symbol	23k

- The nets which are passed to the outside world must be connected to *pins* in the schematic.
 - For each pin in the schematic we also need a pin in the symbol.
- Pins must have the same name as the connected net
- They can be Input / Output / inputOutput (see later)

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Preparing the Schematic

- The easiest way to create a symbol starts from a schematic
- Using Create → Pin (Ctrl-P or button →), create pins for all signals that should be visible 'outside'
 - outputs are signals that will drive to other cells
 - inputs only receive signals. They must be connected later
 - InputOutput are most general. Only use if you have to!

- A pin **labels** the net, i.e. a further label is not required
- Better remove all symbols used for simulation (sources..)

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Creating a Symbol from the Schematic

1. Select Create \rightarrow Cellview \rightarrow From Cellview

2. Check that 'From View' is *schematic* and 'To view' is *symbol*

3. Press ok. In the next window, select the pin locations

A symbol template is created:

• You can set the origin under $Edit \rightarrow Origin$

Make Nice Symbols!

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- Your schematics get more readable if the symbols are 'nice':
 - Power (if present at pins) may be grouped at the bottom
 - Group bias signals, use 'good' names
 - Inputs are left / outputs are right
 - Digital signals are grouped
 - Active Low signals have a bullet
 - Clocks have a triangle
 - Add a little drawing of the functionality Create→Note→Shape or Create→Shape
 - Add text: Create→Note→Text
 - You may delete trivial labels

Creating a Symbol from Scratch

 You can also create an (empty) new symbol directly from the library browser with File → New → Cell View... with view type schematicSymbol

• You must then place all pins, boxes, labels, .. by hand.

Editing a Symbol

- When you (later) add new pins to the schematic, you also have to add them to the symbol.
 - Make sure name and type are the same!
 - Best copy other pins and rename them

- You can move, stretch, ... as usual
- You can change the size or 'justification' of the labels

@instanceName and @partName

Two special labels are created automatically:

[@instanceName]

- [@instanceName] will display surprise! the name of the instance (of this symbol) that you place in another schematic, i.e. **I2** or, better, **lamp1** or so
- [@partName] displays the (library) name of the cell, i.e. vorlesung HighPass or NAND2

Place them somehow nicely (size / alignment / position)

The Selection Box

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- When created automatically, a (red) Selection Box appears
- It marks the area which will be used to 'highlight' / 'select' the instance (in the next hierarchy level):

- The Selection Box can be moved / resized
- If lost (or in manually created cells), it can be created by Create
 → Selection Box
- You cannot route over the Selection $Box \rightarrow keep$ it small
- If no Selection Box is defined, the maximal symbol size is used.

Using the symbol

 In a schematic, you can add your symbol now in the same way as any other instance

VLSI Design: Schematics

Inputs / Outputs / InputsOutputs

After 'Check & Save', warnings may pop up in the CIW:

- InputOutputs can be connected arbitrarily. Use with caution!
- All schematics should be 'clean', i.e. issue no warnings!

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

ruprecht-karls-UNIVERSITÄT HEIDELBERG

TRAVELING THE HIERARCHY

NUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Traveling in the Hierarchy

- Assume you are in Schematic A which contains an Instance of PartType B
- If you want to modify (the symbol or schematic of) B, you normally have to open that cell from the library browser
- You can better *'dive into'* B by
 - Selecting the instance
 - Edit → Hierarchy → Descend Edit (Shift-X)
 - Select the view
 - Select if you want a new window / new tab / use existing tab
- You then end up in symbol / schematic of B
- When done, return back 'up' with Edit → Hierarchy → Return (Shift-B)
- You can also Descend for Read Only (Ctrl-X) or Edit in Place (x). This Edits B but shows A ! Powerful but dangerous!

K 💿 🛞	Descend	00	\odot \otimes
View	schematic		• - • • • • • • •
Open for	🖲 edit 🔾 read 🔾 auto		*
Open in	🔾 new tab 🧕 current tab 🔾	new window	
		ОК Салсе	l Help

ruprecht-karls-UNIVERSITÄT HEIDELBERG

GLOBAL NETS

Global Nets

- A net is normally only known in the corresponding schematic
 - Connecting nets between schematics requires pins
- This can be tedious for signals which are used very often
 - analogue / digital power / ground
 - substrate potential
- You can use global nets, known everywhere
 - They are identified by an exclamation mark: xxx!
- Common global nets are
 - gnd! or sub! chip substrate
 - gndd! and vddd! digital ground /supply
 - gnda! and vdda! analogue ground / supply
- Handle them with care, because it is hard to track where they are used...

- There are several global 'symbols' in analogLib
 - Under Sources \rightarrow Global

- They connect a net automatically to the corresponding global net
- Therefore: Connecting to symbol
 'gnd' is the same as labelling a net with 'gnd!'

Pin Order

- If can happen that the internal order of pins gets messed up
 - You get a warning at Check & Save
 - This happens if you copy pins from other cells, delete pins,...
- To restore correct order, use
 Edit → Properties → Pin Order
- Best copy the Pin Order from another view:

 In rare cases, you have to regenerate (for instance) the symbol. (There is a step which allows you to just 'repair' the wrong stuff so that you nice drawing is not affected) RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

BUSSES AND ADVANCED NET NAMING

 A single 'wire' on the schematic can represent several nets, i.e. it can be a 'bus' or bundle of nets.

When a wire has multiple nets assigned: Imagine the nets **stacked onto each other in the order they are listed**

Examples:

- Simple wire in
- Multiple wires a,b separated by comma
- Bus $d\langle 4:0\rangle$ 5 signals: $d\langle 4\rangle,...,d\langle 0\rangle$
- Bus $x\langle 1:5\rangle$ different index order: $x\langle 1\rangle,...,x\langle 5\rangle$
- Repetition $\langle *3\rangle a, \langle *2\rangle b$ this is equivalent to a,a,a,b,b
- Skip indices $d\langle 7:3:2\rangle = d\langle 7\rangle, d\langle 5\rangle, d\langle 3\rangle$
- Index list $d\langle 1:0,3,\langle *2\rangle 5\rangle = d\langle 1\rangle, d\langle 0\rangle, d\langle 3\rangle, d\langle 5\rangle, d\langle 5\rangle$
- Grouping $\langle 2\rangle(a,b) = a,b,a,b$

This works for labels and for pins (but better only use busses!)

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

More Complicated Examples

- You often need a 'binary' encoding of signals:
 - ⟨*4⟩(a,b) =
 ⟨*4⟩((*1⟩a, (*1⟩b) = a,b,a,b,a,b,a,b)
 - $\langle *2 \rangle (\langle *2 \rangle a, \langle *2 \rangle b) = a,a,b,b,a,a,b,b$
 - <*1>(<*4>a, <*4>b) = a,a,a,a,b,b,b,b

Advanced Net Names

 If you are not certain how a complicated net name expands: Type the expression in the CIW (Command Interpreter Window) using

(dbProduceMemName "expression")

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Multiple Symbols: 2nd example

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

Here is a 3 Bit address decoder which activates one of 8 output signals sel(7:0) as a function of 3 address inputs add(2:0):

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

COMPONENTS WITH (SYMBOLIC) **PARAMETERS = DESIGN VARIABLES**

Using **Design Variables**

The parameters of components can be assigned a text value. This shows up in the schematic netlist.

The design variable can then be varied in simulation

Design Variables

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- When written back, the design variables are stored in the cell (not just in the schematic cell view) (thanks @ Michael!)
- They can be seen and changed from the library browser in the cell properties:

Cell	问 <u>С</u> ору	Ctrl+C		name	HighPass	owner	fischer
	<u>R</u> ename	Ctrl+Shift+R		group:	1004	lastModify	: Mar 23 15:46:59 2020
HighPas	Delete	Ctrl+Shift+D		readPath /home/fischer/cadence/umc_018/0A/CCS2017/HighPass			
ActiveFi				writePath	/home/fischer/ca	dence/umc_018/0A,	/CCS2017/HighPass
	Proper <u>t</u> ies			UNIX Pern	nissions Mode		
ClkGen	Opdate Thumb	nails		Owner :	rwx Gi	OUD: IWX	Other:
DiffAmp	🊿 Reanalyze <u>S</u> ta	tes	0	lfData		"	<pre>tlistProcedure nil))))</pre>
Ex5.1 Ex5.2	Check <u>I</u> n		d d	esignVarLis	st (("fsir	ר" "1M") ("R" "1k	:"))
Ex5.4	Check <u>O</u> ut				OK Cancel A	Apply (Add) [Delete Modify Help
Ex6.1	Cancel Check	ut	L				
EX6.2 GainSta	U <u>p</u> date			(cadr	(geGetEditC	CellView)~>c	ell~>prop)~>??
Gainsta	Show <u>F</u> ile Stat	us		(00:0	×2013/31D Ce	nil name	onlithe "biob.
Gyrator	Su <u>b</u> mit				designVarLis	t" p ject d	b:0x2619741a rand
HighPas						5	-
Idealized	d Gainstade			(("fsin" "1M")	
					("R" '	"1k")	
)	valueType "	ILList" ass	ocTextDisplays
				、 n	11		
				1			

 (Later: Using Skill, search for property 'designVarList' from a schematic: (geGetEditCellView)~>cell~>prop) ruprecht-karls. UNIVERSITÄT HEIDELBERG

SYMBOLS WITH PARAMETERS

NUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Parameterized Symbols (Step 1/3)

- It occurs that you need very similar schematics where only few parameters are changed (often transistor sizes)
 - Example: Inverter with different PMOS widths
 - (Unfortunately, parameters cannot be used everywhere...)
- Instead of creating multiple cells, you can create one cell with a PARAMETER:
- 1. In the schematic:

introduce the parameter with **pPar("pname")** (capital P!)

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Parameterized Symbols (Step 2/3) – Optional!

2. In the symbol: Add a label

- Label Choice: analog device annotate
- Label Type: NLPLabel

Add any text, referring to the parameter as [@pname]

Parameterized Symbols (Step 3/3)

- 3. Cadence still needs to know about the new parameter:
 - In CIW \rightarrow Tools \rightarrow CDF \rightarrow Edit
 - Choose Scope: Cell
 - Choose CDFLayer: Base
 - Select Cell

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- Add your *pname* in the form
 - Type: String
 - Set prompt string & default value
 - Store Default: no (=default)
 - Parse as CEL: yes
 - Parse as Number: yes
 - Editable Condition: t (needed ?)
 - Units: don't use (=default)

Parameterized Symbols: Instantiation

- The Symbol now shows your text + value
 - You may need to delete and re-instantiate existing symbols..

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

 You can now change the parameter in the instance properties

PMOS width is 1e-6

ín

iп

V2

Inverter

out

out

ruprecht-karls-UNIVERSITÄT HEIDELBERG

INHERITED NETS

Inherited Nets

- It is possible to over-write nets in schematics (mostly supplies) from a higher hierarchy level.
- This 'inherited nets' approach is not further described here...

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

FEATURES OF THE SCHEMATIC EDITOR

- The additional display of net names at the pins of transistors is often confusing.
 - You can turn this off under View \rightarrow Hide Terminal Labels
- If you want to see all places where a net in one schematic connects:
 - Enable Highlighting under View → Net Highlighting
- If you want to follow a signal through the hierarchy:
 - Highlight the net under Create \rightarrow Probe \rightarrow Add Net