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Introduction
What is Linux

What is Linux

I A derivative of a Unix operating system.
I Other types of Unix systems:

I Solaris
I MacOS X
I BSD
I IBM AIX

I Consists of ...
I A kernel: Implements specific APIs, provides system calls, a file system, a networking stack and

much more.
I A set of optional programs:

I A shell: Execute commands.
I A graphical window subsystem: Displays windows.
I Compilers and runtime environments.
I ...
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Introduction
What is Linux

Linux Distributions
I A Linux distribution contains the Linux kernel and a lot of different

applications.
I Some distributions are meant for headless server operation.
I Some are meant for desktop application and include a graphical user

interface.
I Some have a focus on stability of the applications, other focus

“bleeding-edge” software versions.
I Selection of common distributions:

I Debian
I Ubuntu (based on Debian)
I Mint (based on Ubuntu)
I Fedora
I CentOS
I Arch Linux
I ...

https://de.wikipedia.org/wiki/Datei:Tux.svg
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Introduction
What is Linux

How to Work with Linux

I Linux is a multi-user system: å Inherently supports multiple concurrent
users.

I Most important tool to do something: The terminal / the shell.
I Terminal: Old expression to describe a terminal device that is used to

send and receive command. The terminal itself has no computing power –
it is hooked up to e. g. a mainframe in the basement.

I Terminal today: A program that provides a command prompt. May even
be in a graphical window.

I You can run commands or scripts with the terminal.
I Different shell versions exist with slight variations (å see later).
I The Linux shell is easier to use and much more powerful than Windows

cmd.exe.
https://de.wikipedia.org/wiki/Datei:Televideo925Terminal.jpg.
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Introduction
Working Environment

Working Environment
I If you do not have Linux on your system, you can log into a server at university.
I Open VPN connection or connect with the university network by other means.
I Get an SSH client like PuTTY:

https://the.earth.li/~sgtatham/putty/latest/w64/putty.exe.
I Use PuTTY to connect to physik1.kip.uni-heidelberg.de.
I Log in with your Uni-ID as username (e. g. jb007) and the corresponding password.
I You get a shell on the remote host system.
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Introduction
Working Environment

Working Environment (2)
I KIP-Server has Debian installed.
I The default shell is bash.
I You can use the shell to issue commands. We will get to know some of them in the next

sections.
I You can access your files linked with your Uni-ID.
I KIP machines are quite old – please do not run compute-intensive workload ©.
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File System
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File System
Basics

File System in Linux

I Preface: Microsoft Windows
I In Windows you have different drives (visible as C:\, D:\, ...).
I Every file needs to be specified with respect to a drive. There is no global file root.

I In Linux everything is organized in a hierarchical way!
I All paths can either be specified relative to the current directory or absolute by referencing

the file root.
I The root is indicated by the “slash character” /.
I Paths can also be specified relative to the user’s home directory, which is indicated by the

tilde ˜.
I To establish a true hierarchical namespace, every object must implement the file API. In

other words: Everything is a file.
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File System
Basics

File Types

I Regular files (-):
I Text files, ASCII style or equivalent.
I Binary files like pictures, programs, videos, ...

I Directories (d)
I Block files that represent block devices, e. g. HDDs or SSDs (b).
I Character files: Special input devices like the computer mouse or the terminal (c).
I Pipes (p) and Sockets (s): Means for inter-process communication.
I Links (l): Ways to point to another file object.
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File System
Basics

Browsing the Directory Tree
I With the hierarchical structure, a tree is established.
I Directories contain other directories and may also contain files.

å Absolute path of the file report.doc is: /home/its/ug1/ee51vn/report.doc
http://www.ee.surrey.ac.uk/Teaching/Unix/unixintro.html
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File System
Basics

Browsing the Directory Tree (2)

I In each directory there are two special files that are available by default and cannot be
removed.

I Special file . : Represents this directory.
I Special file .. : Represents the parent directory of this directory.
I Special files are required to navigate the directory tree and to know where we are.
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File System
Basics

Browsing the Directory Tree (3)
Two commands to browse through the files with the shell:
I cd: Change directory.

I The command requires one argument: The target directory, either as absolute or relative path.
I Changes the current working directory to the given directory.
I Special arguments:

I cd (without any parameters): Switches to the user’s home directory.
I cd -: Switches to the previous working directory.

I ls: List directory contents.
I Can be executed without any arguments to show list of files in current directory.
I Can be given a list of directories to inspect instead: ls /tmp /home/ lists the contents of

/home and /tmp.
I Parameters control output behavior:

I ls -a: Show all files. Files that start with a dot (e. g. .textfile.txt) are considered hidden and
normally not shown.

I ls -l: Show files in a list with more info.
I ls -h: Show file sizes in a human-readable syntax instead of byte count.
I ls -lah: All of the above.
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File System
Basics

File System Usage

I If you need to find out how large a directory is, use du (“Directory Usage”?).
I Useful parameter du -h: Print sizes in human-readable syntax instead of byte count.

I To check how full your storage medium is, use df (“Disk free”).
I df -h extremely useful to read the output properly.
I df also gives you an overview of all externally mounted files (additional hard drives, network

shares, ...).
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File System
External Files

Drives and Partitions

I Storage media are block devices.
I Block devices are special files in the directory /dev/.
I Some examples:

I IDE hard disks are found as /dev/hdXY.
I SATA/SCSI hard disks are /dev/sdXY.
I CD-ROM drives are /dev/cdromY.
I Floppy drives are /dev/fdY.

I Drives are labeled with letters:
I First IDE drive is /dev/hdaY.
I Second SCSI drive is /dev/sdbY.

I Partitions are labeled with numbers:
I Second partition on first IDE drive is /dev/hda2.
I Sixth partition on third SCSI drive is /dev/sdc6.
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File System
External Files

Mounting Devices
I When accessing files on other locations than the system disk, these other locations need to

be mounted.
I To mount a file system, a mount point is needed: A directory under which the mounted file

system should be made available.
I For hard disks, a file system driver is required: If the hard disk is formatted with NTFS, you

need an NTFS driver.
I Network file systems are e. g. NFS or SMB/CIFS – you need additional drivers for this as well.
I Mounting files usually requires admin privileges (å You cannot do this on university systems).
I To mount a hard drive:

I Find the correct hard drive and partition with fdisk -l.
I Create a mountpoint, e. g. with mkdir -p /media/data-hdd.
I Mount the device (in this case /dev/sdb2): mount /dev/sdb2 /media/data-hdd.
I Check out the data: ls -al /media/data-hdd.
I Unmount with umount /media/data-hdd.
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File System
External Files

Mounting in User Space

For experts:

I There are libraries to mount file systems in user space without admin privileges.
I You can mount a remote directory over SSH via sshfs.
I Target system needs to have sshfs installed, remote system only needs SSH server.
I Mount directory with

sshfs user@server.example.org:/remote/directory /local/mountpoint.
I Unmount with fusermount -u /local/mountpoint.
I My opinion: Only use this as quick hack if other means are unavailable. You have a lot of

problems, if the SSH server is unresponsive or has high latency.
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File System
Permissions

File Permissions

I Every file or directory has an owning user and a
group.

I Ownerships can be checked with ls -l: First name is
the user, second name is the group.

I Permissions are split into three segments:
I User permissions.
I Group permissions.
I Other permissions (people where user or group do

not match).
I Every segment has three permission attributes:

I Read permission (r, Code 4).
I Write Permission (w, Code 2).
I Execute Permission (x, Code 1).
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File System
Permissions

Permission Codes
I Reminder: Read (4), Write (2), Execute (1).
I Codes are used as bit set:

I Permission of 0: Nothing allowed (except maybe deletion, depending on directory permission).
I Permission of 3: Write + Execute.
I Permission of 5: Read + Execute.
I Permission of 6: Read + Write.
I Permission of 7: Read + Write + Execute.

I Permission string is first column in ls -l: -︸︷︷︸
type

rwx︸︷︷︸
user

r--︸︷︷︸
group

r--︸︷︷︸
other

. Corresponding code: 744.

I Permissions can be changed via the chmod command (change file mode bits).
I chmod 755 myfile.txt sets permissions to 755, -rwxr-xr-x.
I chmod o-x myfile.txt removes x permission from “other”.
I chmod u+w myfile.txt adds w permissions to “user”.
I chmod g+r,o-r myfile.txt adds r permissions to “group” and removes r permissions from

“other”.
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File System
Permissions

Changing Ownership
I To change ownership of a file or directory, use the chown command.

I chown install:staff myfile.txt changes the ownership to the user install and the
group staff.

I chown root. myfile.txt changes the ownership to the user root and the group root.
I To give a file to another user, you need to be root (the admin user which is allowed to do

everything).
I To give a file to another group, you need to be in that group (or be root).
I You can find out in which groups you are with the command groups.
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File System
File Links

Linking
I You can create a “pseudo-file” that points to another file (å a link).
I Useful when the same file is needed at multiple locations: No need to copy the file.
I A linked file does not require any additional storage space (except for some book-keeping

meta data).
I Two types of links:

I Hard Link:
I Create with

ln sourcefile.txt /other/dir/targetfile.txt.
I Hard-linked files are not distinguishable.
I Extremely hard to keep track of linked files §.
I Can only be made inside a single file system (e. g.

not over two partitions).
I Soft Link:

I Create with
ln -s /dir/sourcefile.txt /other/dir/targetfile.txt.

I When source file is deleted, all links point to no file.
I Can span multiple file systems.
I Linked files have a special file type (Code l).
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Basic Commands
Shell Overview

Shell Overview

I Shell shows the prompt: user@myhost:˜$
I Your current user name.
I The host name of the system that you are using.
I The current working directory (user home: ˜).
I The $ indicates a user shell (# would indicate a root shell).
I All of this is configurable; the default depends on your Linux installation (Debian, CentOS, ...)

I When you have executed several commands, you can navigate through prior commands with
the arrow keys: ↑ , ↓ .

I You can auto-complete commands and directory names with the −−→−−→ key (press twice).
Use this whenever possible!

I You can reverse-search through already executed commands (e. g. look for patterns) by
pressing Ctrl + R and then type your search-phrase. Also use this whenever possible.
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Basic Commands
Shell Overview

Getting Help
I Sometimes you don’t know how to use a command.
I You can either google “... how to do XY in Linux?”...
I ... or you can use the build-in help!
I Most programs have a parameter -h or --help (e. g. ls --help) that gives a short

overview.
I If you need more documentation, use man COMMANDNAME to find out about a certain

command (e. g. man ls to learn about ls).
I man can do much more than you think!
I First of all, there is a man-page about man (execute man man, obviously).
I You can use man to learn about C-functions (e. g. man 3 sprintf).

1 The t a b l e below shows the s e c t i o n numbers o f the manual f o l l ow e d by the t yp e s o f pages they c on t a i n .
2 1 Execu tab l e programs or s h e l l commands
3 2 System c a l l s ( f u n c t i o n s p r o v i d ed by the k e r n e l )
4 3 L i b r a r y c a l l s ( f u n c t i o n s w i t h i n program l i b r a r i e s )
5 4 S p e c i a l f i l e s ( u s u a l l y found i n /dev )
6 5 F i l e f o rmat s and conv en t i o n s eg / e t c /passwd
7 6 Games
8 7 M i s c e l l a n e o u s ( i n c l u d i n g macro packages and conv en t i o n s ) , e . g . man(7) , g r o f f ( 7 )
9 8 System a dm i n i s t r a t i o n commands ( u s u a l l y on l y f o r r o o t )

10 9 Ke rne l r o u t i n e s [ Non s t anda rd ]
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Basic Commands
File Commands

File Commands

I We already know cd and ls.
I Remember cd (without parameters) to switch to user home.
I Remember cd - to switch to previous directory.
I Remember tilde-notation (˜) as short-hand notation for home-directory (e. g.

ls ˜/Downloads).
I Print working directory: pwd

I Get absolute path of your current working directory.
I Particularly useful in scripts to find out where the user currently is.

I Create directory (“make directory”): mkdir
I Needs an argument to specify the directory to create.
I Can use relative or absolute path specification.
I Useful parameter: -p. Also creates all non-existing sub-directories(e. g.

mkdir -p /tmp/some/long/dir/tree/that/is/deep).
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Basic Commands
File Commands

File Commands (2)

I Remove files / directories: rm
I rm file.txt deletes the file file.txt.
I rm *.txt deletes all files that end in .txt.
I rm -f file.txt deletes the file file.txt and does not ask

for confirmation if the file is protected (but deletable).
I rm -r myDir deletes the directory myDir and everything that

is in it.
I rm -rf myDir deletes the directory myDir without asking back

(can be more dangerous when combined with sudo).
I Get a directory tree: tree

I Requires additional program (sudo apt install tree).
I Print a graphical representation of the directory tree on the

command line.
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Basic Commands
File Commands

File Commands (3)

I Create an empty file: touch
I Use like touch filename.txt.
I If file does not exist, touch will create it; it will be empty.
I If file exists, touch will update the last modified timestamp (check with ls).

I Copy a file: cp
I Use like cp source.txt dest.txt.
I Will overwrite destination file if it exists already.
I Copy entire directory: cp -r srcDir /some/where/destDir.

I Rename a file (“move”): mv
I Use like mv old.txt new.txt.
I Will overwrite destination file if it exists already.
I You can also rename directories: mv oldDir /some/where/newDir.
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Basic Commands
Editing Files

Editing Files

I Write file to command line / “concatenate”: cat
I Intention: Merge/concatenate multiple files and print result on command line.
I Usage: cat file1.txt file2.txt or even cat *.txt.
I Often used to have a quick glance at a small file.

I Read a file: less / more
I more does the same as less; less can do more ©.
I Use like less file.txt.
I You can navigate with arrow keys and space bar.
I Quit by pressing q.

I Print first / last lines of file: head or tail
I head -20 file.txt prints first 20 lines of the given file.
I tail -100 file.txt prints last 100 lines of the given file.
I head (without parameters) reads from stdin and then prints out the first 10 lines.
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Basic Commands
Editing Files

Editing Files (2)

I Count words / lines: wc
I wc file.txt displays number of lines, words and bytes respectively.
I wc -l file.txt only displays number of lines.
I wc -l (no file name) will read from stdin and then count the number of lines.

I Edit a file: nano
I Easy-to-use text editor.
I Open or create a file with nano file.txt.
I Do whatever you want.
I Press Ctrl + X to quit. Confirm with Y + Enter .
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Basic Commands
Editing Files

Editing Files (3)

I More complicated editor: vim
I Do not use before you read a tutorial!
I Can dramatically increase your productivity if you know how to

use it properly.
I Will dramatically decrease your productivity if you don’t know

how to use it and just want to show off to your colleagues.
I You can exit vim by pressing Esc numerous times, then write

:q! + Enter
I There are probably some people among us who will claim “vim

is best, no one can live without it”. I can live without it (most
of the time) ©.

https://comic.browserling.com/extra/36
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Basic Commands
Searching

Searching

I Look for patterns in files (“Global Regular Expression Print”): grep
I grep "foobar" *.txt will print all lines from all .txt files in the current directly that contain

the term “foobar”.
I grep -i "foobar" *.txt will ignore the case – therefore “fOObAr” will also be found.
I grep -r "foobar" . will look for “foobar” in all files and subdirectories of the current

directory (remember special directory .).
I grep -E "key=[0-9]+" file.txt will read file.txt and look for lines that contain key=

followed by a sequence of characters in the range 0 to 9 that is at least one character long. You
will get all lines that match as a result.

I grep -E -o "key=[0-9]+" file.txt will do the same, except that you only get the
matching section. If the file contains the line “Hello 123 key=456 other” you will get key=456.

I egrep is the same as grep -E.
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Basic Commands
Searching

Searching (2)

I Looking for files: find
I find . -name "important.txt" searches for the file important.txt in this directory and all

subdirectories.
I Prints all files that match.
I Does not look into the files.
I find . -name "important.txt" -exec cat {} \; executes cat on all files that were

found. You can combine this with any other command (e. g. rm to delete all files found. Useful
to clear Thumbs.db files ©).
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Basic Commands
Multitasking

Multitasking

I You can start a command to run in the background – your shell can immediately be reused.
I Issue background command with an ampersand (&) after your command.
I Example with graphical editor: gedit myfile.txt &
I Micro-Tool to stress one CPU core: yes > /dev/null & (do not execute yes without

redirecting output to /dev/null!)
I List jobs in the background: jobs
I Re-gain control of the jobs listed: fg 1 (for the first job).
I Drop control again: Ctrl + Z , followed by bg.
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Basic Commands
Multitasking

Task Hierarchy
I In Linux all tasks/processes are launched from a parent process.
I The init process has the PID 1 and launches other processes.
I If the parent process terminates, all child processes will terminate as well.
I Application:

I You establish a SSH connection to a machine and launch a ton of processes.
I If you close the SSH session, all launched programs will terminate (under normal circumstances).

Florian Beenen Introduction to Linux 22.01.2021 35/57



Basic Commands
Multitasking

Identifying Tasks
I With htop you can get an overview of your system’s resources.
I On some systems htop is not installed.
I Very useful features:

I Sort tasks by CPU utilization or RAM usage (click on CPU% or MEM%).
I Check out what other users are doing on your system.
I Kill / Terminate tasks that are unresponsive with F9.
I Switch between tree and list view with the hotkey t.
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Basic Commands
Multitasking

Terminating Tasks

I There are several ways to terminate / kill a program.
I When it runs, press Ctrl + C in the command line. This will send an interrupt to the

program.
I If the program is unresponsive and refuses to kill itself, you can try sending SIGTERM.

I Every process has a process ID (PID). You can get a list with ps -aux.
I Use kill PID (e. g. kill 21311) to send the SIGTERM signal to the process.

I If the process still does not want to terminate, you can send the unmaskable interrupt
SIGKILL.
I Find the PID.
I Execute kill -9 PID, e. g. kill -9 21311.

I Also useful: Kill all tasks with a certain name: killall firefox.
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Basic Commands
Multitasking

Exercise with Tasks

Process Termination in the Hierarchy
I Log onto physik1.uni-heidelberg.de via SSH or via Remote Desktop.
I Launch two terminal sessions (either two SSH connections or two Terminal windows).
I Open gedit on the first terminal.
I Use the second terminal to find out the PID of the first terminal session.
I Kill the first terminal session via the second session.
I Observe, how gedit closes as well.
I Provide proof with screenshot how you managed to get the PID and what commands you

executed.
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Basic Commands
Multitasking

Exercise with Tasks (2)
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Scripting

Scripting
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Scripting
Pipes and Redirections

Redirecting Outputs

I There are three different default streams:
I stdout – “Standard Out”: Default channel for command output/results.
I stderr – “Standard Error”: Default channel for reporting errors/failures.
I stdin – “Standard In”: Default channel for the command to receive input (e. g. over the

keyboard of the user).
I Streams stdout and stderr are often merged automatically and shown together on your

terminal!
I You can redirect the streams to files or other commands!

I Operator > Write result of stdout to a file.
I echo "Abc123" > file.txt : Overwrites the file and writes the result of the command into the

file.
I echo "Abc123" > /dev/null : Redirects the output to the “black hole” to discard results.
I echo "Abc123" 2> /dev/null 1> file.txt : Redirects stderr to /dev/null and stdout to

file.txt.
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Scripting
Pipes and Redirections

Redirecting Outputs (2)

I Operator >> Appends the result of stdout to a file.
I echo "Abc123" >> file.txt : Adds a new line to the file with the result.
I echo "Abc123" 1>> file.txt 2>err.txt : Appends result of stdout to file.txt and

overwrites err.txt with the output of stderr.
I Operator < Takes a file and redirects it to stdin.

I cat < file.txt : cat will read from stdin if launched without arguments. stdin is
connected to the contents of file.txt, therefore cat will print all its lines.

I Operator << is used for in-command text. Needs a termination string. Will read the
following lines until termination string and connects this to stdin.

1 ca t << " the t e rm i n a t i o n s t r i n g "
2 h e l l o
3 ano the r l i n e
4 the t e rm i n a t i o n s t r i n g

Florian Beenen Introduction to Linux 22.01.2021 42/57



Scripting
Pipes and Redirections

Redirecting Outputs (3)

Try Input Redirection
I Create a file with some words in it. Put one word per line. You can do this with e. g. nano.
I Print the file to the command line with cat.
I Sort the file line-wise with the sort command, like: sort < myfile.txt.
I Make a screenshot of the results.
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Scripting
Pipes and Redirections

Pipes

I Multiple commands can easily be concatenated with pipes. å Inter-process communication.
I The pipe operator is |.
I A pipe will connect stdout of the first command to stdin of the next command.
I Example: cat file.txt | grep "e" | sort | tail gives you the last 10 lines that

contain the small letter “e” in a sorted way.
I Note: cat | grep combo generally useless, since grep can read files.
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Scripting
Pipes and Redirections

Pipes Example

Try Pipes
I There is a dictionary file located at /usr/share/dict/words. It contains a lot of words.
I We want only want to have the lines that match this:

I Line starts with a capital N (help: use egrep with RegEx: ˆN)
I Line does not end with ’s (help: inverse match with RegEx: \’s$.

I We want to reverse-sort the result (help: study parameters of sort).
I We want to count the characters of the resulting output (help: study parameters of wc).
I The output should be a number!
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Scripting
Batch Execution

Batch Execution

I You don’t always need to enter your command interactively.
I You can write a script which contains all your commands.
I A script is just a series of commands which are interpreted by

the shell.
I You can use control flow commands (if-then-else) and iteration

commands (loops) to write real programs!
I You can also define functions to make your script modular.
Content of a script:
I First line: Some cryptic thing called Shebang.

I Specifies the shell that should be used to interpret the following script.
I Necessary to cope with the differences of the various shells.
I To use bash, just write #!/bin/bash.

I Following lines: Contain the commands to be executed.
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Scripting
Batch Execution

Different Shells

I Bourne shell: sh
I C shell: csh. Uses C-like syntax.
I Korn shell: ksh. Combines features of sh and csh.
I Bourne again shell: bash. Default shell for GNU/Linux. Extended version of sh.
I Restricted Bourne again shell: rbash. Shell where stream redirections and changing the

directory are prohibited. Useful for restricted jumphosts. Not useful for scripts.

å Most of the time you will end up with bash.
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Variables

I The shell supports variables and knows exactly one type: String.
I Variables do not have to be declared – they can just be defined.
I Define a variable with myvar="some text".

I No whitespace is allowed between myvar and =.
I It is best to always use quotation marks.

I Define environment variables that are also visible in child processes:
export variable="value".

I Get a list of all set variables: set.
I Get a list of all available environment variables: env.

1 #!/ b in / bash
2 s e t | g rep t e s t v a r 1
3 t e s t v a r 1=1
4 s e t | g rep t e s t v a r 1
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Variables (2)
I Read a variable with $myvar.
I Alternatively if whitespace is not possible after variable name: ${myvar}.
I Special variables:

I $PATH includes a list of directories that are searched for valid commands.
I $PS1 is used to process strings to be shown on the shell before they are printed.
I $SHELL gives you the path of the shell that is currently used.
I $LANG contains the system language settings.
I $0 contains the program name, if executed from a script.
I $1, $2 ... contain the command-line arguments of the script.
I $@ is an array of all command-line parameters.
I $? contains the return code of the last command.
I $$ contains the PID of this process.

1 #!/ b in / bash
2 echo " F i r s t param : $1 "
3 echo " A l l pa ramete r s : $@"
4 echo " Launched wi th $# paramete r s "

Florian Beenen Introduction to Linux 22.01.2021 49/57



Scripting
Variables

Variables (3)
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Execute Commands

I You often need the result of a command as a variable.
I Way 1: Use backticks:

I myvar=`cat /usr/share/dict/words | wc -l`
I Looks simple (©), but you cannot “cascade” this.

I Way 2: Use $(cmd):
I myvar=$(cat /usr/share/dict/words | wc -l).
I Looks more complicated but is cascadeable.
I abc=$(cat $(ls *.sh)).
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If Statements
I Syntax: if CONDITION ; then COMMANDS else COMMANDS fi
I Conditions are often formed with the test command.
I The test command has a useful shortcut: [ some stuff ]
I Examples:

I Check if file exists: if [ -f myfile.txt ] ; then ...
I Check if directory exists: if [ -d myDir ] ; then ...
I Check if file does not exist: if ! [ -f myfile.txt ] ; then ...
I Check if variable contains stuff: if ! [ -z $var ] ; then ...
I Check if variable equals 5: if [ $var -eq 5 ] ; then ...

1 #!/ b in / bash
2 i f [ $1 −eq 1 ] ; then
3 echo " Succe s s "
4 e l s e
5 echo " F a i l "
6 f i
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Loops

I Often useful: Loop over set of files. Hint: Avoid iterating over the result of ls.
I Use a Glob expression instead.
I Syntax: for f in *.txt ; do ; COMMANDS ; done.
I Iterating over array: for e in $@ ; do ; COMMANDS ; done.
I C-Style loops also possible: for ((i=0; i <= 10; ++i)) ; do ; COMMANDS ; done.

1 #!/ b in / bash
2 f o r e i n $@ ; do
3 echo $e
4 done
5

6 f o r ( ( i =0; i < 10 ; ++i ) ) ; do
7 echo $ i
8 done
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Calculating

I You can also calculate in bash. Often useful to compute numbers, increment counters, etc...
I Way 1: Use expr to evaluate expressions.

I expr 10 + 12 yields 22.
I expr 10 * 12 yields a syntax error in bash.
I expr 10 \* 12 yields 120.

I Way 2 (preferred by me): Use bash-mechanics with $((...)).
I echo $((10+12)) yields 22.
I echo $((10*12)) yields 120.
I echo $((10**12)) yields 1012.

1 #!/ b in / bash
2 f o r ( ( i =0; i <= 10 ; ++i ) ) ; do
3 echo $ ((2∗∗ $ i ) )
4 done
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Functions
I Define functions with function myFunc { ... }.
I Functions cannot have parameters §. Only implicit through $1, $2, ... which are

exclusive for a function.
I Functions also have no return value. They return whatever you print to stdout during the

function §.
1 #!/ b in / bash
2 f u n c t i o n r e p l a c e {
3 u s e r="$1 "
4 pas s="$2 "
5 sed −e " s|++USERNAME++|$u s e r | g ; s |++PASSWORD++|$pass | g " templ . t x t
6 }
7

8 ca t > templ . t x t << EOF
9 He l l o ,

10 your username i s ++USERNAME++ and your password i s ++PASSWORD++.
11 EOF
12

13 r e p l a c e Hannes abc123
14 r e p l a c e J u l i a 213 abc
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Exercise

Backup-Tool
I We want to write a tool that backups all files in a directory to a ZIP-archive.
I The program receives one parameter: The directory to backup.
I If the directory does not exist, the program should say “Directory does not exist” and then

terminate.
I Otherwise, an archive name is generated in a function called getArchiveName.

I The function does not take any parameters.
I It will return a string that looks like this: Backup-2021-01-22.zip.
I The number should be replaced by the actual current date.
I If a file already exists that has this name, an index should be appended and counted correctly:

Backup-2021-01-22_1.zip. If that file also exist, create Backup-2021-01-22_2.zip and so
on...

I The given directory will be zipped with the zip command which creates an archive with the
calculated name.

I Test your solution extensively and then submit it.
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Hints
I You can use the date command to get a formatted string of the current date: Example:

date +"%d:%m". Check out the man page!
I You may want to use while loops. Syntax: while CONDITION ; do ; COMMANDS ; done.

Conditions may be used identical to the if-statement.
I To archive the files, use zip -9 -r filename.zip dirToPack.

I -9 gives maximal compression.
I -r makes the program process entire directories.

I Try to use variables for everything. You don’t need fancy tricks if you manage your variables
correctly.

I You can concatenate strings by just writing them after one another:

1 #!/ b in / bash
2 s t r 1="He l l o "
3 s t r 2="World "
4 combo="${ s t r 1 } ${ s t r 2 }"
5 echo $combo

å The entire script requires round about 20 lines and no “hacks”.
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