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Principles
What is Git

What is Git

I Software to keep track of file versions.
I Other related software: Subversion (SVN) or Mercurial.
I Git can be used for managing...

I simple programming exercises (for lectures PCA, PAD, HPI,
DHD, ...).

I Bachelor/Master projects.
I text files / LATEX documents.
I personal notes.
I ...

I Git can deal with any kind of file – it works best for text-based
files where partial changes occur over time.
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Principles
What is Git

Why use Git?

Git is useful because...
I you can document changes to files.

I Who did what, why and when?
I Time management: What did I do today?
I If you have an abusive boss: Prove that you worked on your assigned project ©.

I you can try out new stuff without breaking/affecting existing project versions.
I you cannot accidentally lose data when using sudo rm -rf too aggressively.
I you can track errors in e. g. a program back in time to find the root cause.
I it enables you to work together with multiple people on the same project.
I you can use Git as a foundation to do awesome automation tricks (e. g. automated building,

testing, deploying, ...).
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Principles
What is Git

Git Terms

I A project that is managed with Git is called Repository.
I A Repository is saved on your computer.
I You can share a Repository with other people/computers to collaborate.

I Data points where file versions are saved are called Commits.
I You can access old Commits.
I You can compare two different Commits and find out what has changed.
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Principles
Commits

Git Commits

I Every Git Commit has some meta data assigned:
I Name of the user who issued the Commit.
I Time when the Commit was issued.
I Description of the Commit: Has to be created by the

user in a meaningful way.
I A reference to the previous Commit(s).

I Git Commits are identified by a name which is formed
by a SHA-1 hash (e. g.
64efe35c4535b472d2fe38a6f696adc56dc38ff4).
I Meant to be unique for all Commits on the world.
I Collision attacks are possible (but unlikely).
I The future is now: https://www.linux-magazin.

de/news/git-2-29-unterstuetzt-sha-256/
(SHA-256 in Git).
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Principles
Commits

Commit Graph
I Every Commit has at least one predecessor (except for the first Commit).
I Commits can not have circular dependency (graph is acyclic and directed).

Linear relationship A B C D

Split path
A B C D

E F

Merged path
A B C D

E F

G

Invalid
A B C

E F
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Principles
References

References

I If one Commit has multiple parents, it is a merged Commit.
I From one Commit only the parents are available:

A B C D

E F

I From Commit E the history is A ← B ← E.
I All other Commits are not reachable.
I The Repository therefore needs to store where the “newest” Commits are.
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Principles
References

Branch
I A Branch is the most common form for a reference to a Commit.
I A Branch gives a name to a Commit.
I Multiple Branches may point to the same Commit.
I Branches do not necessarily need to point to the newest Commits.

A B C D

E F

[feature1]

[feature2][test1]

G H[feature3]

I In this graph, Commit H is not referenced by any Branch and therefore inaccessible.
I If you know the name of the Commit (the hash) you can still create a Branch for it.
I Inaccessible Commits will be purged by the garbage collector eventually.
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Principles
References

Special Reference: HEAD

I There is a special reference called HEAD.
I It is used to point to the current “active” Branch.
I The active Branch is the one you are currently working on (å where you create Commits).
I Normally, HEAD is a reference to a Branch (not a Commit).
I You can (temporarily) set HEAD to a Commit by specifying its hash: Detached HEAD.

A B C D

E F

[feature1]

[feature2]

[HEAD] A B C D

E F

[feature1]

[feature2][test1]

[HEAD]
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Principles
Creating New Commits

Project State

I There a three places where file changes are recorded:
I The latest Commit – the Branch that is referenced by HEAD.
I The current working directory: You may have edited some files (this has nothing to do with Git).
I The Index: A staging area where files are collected that should be included in the next Commit.

I The Repository is regarded “clean” if all three data sets are identical.
I What you have to do in order to create a new Commit:

1. Edit your files – do the actual work on the project.
2. Mark files that you want to commit. Add them to the Index.
3. After all files are marked / the Index is updated correctly, issue a Commit and specify the

corresponding message.
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Principles
Creating New Commits

The Index

I Why do we need an Index?
I This sounds like unnecessary bureaucracy – we could just directly put all changed files into

one Commit automatically!
I Advantages of separate Index:

I Split file changes in different Commits.
I Optionally, do not commit file changes in specific files at all (you tried some improvised hack on

your machine ©).
I Splitting is useful to separate changes in a logical way:

I I fixed a security bug in the server application. å One Commit.
I I re-wrote a function somewhere else. å Another Commit.

I Commit messages are more meaningful, it is easier to understand what has happened when
looking at the Commit graph.
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Commands

Commands
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Commands

A Summary of Git Usage

https://xkcd.com/1597/
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Commands

Fundamentals
I To use Git you must install Git to your system.
I Install with sudo apt install git on Debian-like Linux distributions.
I It is a nightmare to use Git with Windows! I recommend to use Windows Subsystem for

Linux (WSL) and then do everything “the Linux way”.
I You manage everything Git-related with the git command.
I You can get help here: https://git-scm.com/docs.
I You can also search the man page: man git <subcommand>.
I When using Git for the first time:

I Set your (real) name: git config --global user.name <first name> <last name>.
I Set your mail address: git config --global user.email <e-mail address>.
I This data is included in every Commit! Please set it to something meaningful.
I Enable colorful output: git config --global color.ui auto.
I Set the preferred text editor: git config --global core.editor <editor name> (e. g.

nano, vim or gedit).
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Commands
Initializing a Repository

Create a Git Repository
I Create a fresh Repository with git init.
I If a Repository already existed, nothing is overwritten: It is safe to run git init on an

existing Repository.
I The command will create the hidden directory .git inside your current working directory.
I The .git directory contains everything that Git needs to operate (all the Commits, meta

data, Branches, ...).
I You may not delete / move / edit the .git directory.
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Commands
Initializing a Repository

Clone a Git Repository

I If you already have a Git Repository you can download / clone it.
I Use git clone <url>.
I Example: git clone https://sus.ziti.uni-heidelberg.de/Lehre/WS1718_Tools/GIT/uebung.git.
I Creates a new directory with the name of the cloned Repository.
I Give it a custom name with git clone <url> <local-repo-name>.
I You can either clone with HTTP(s) or with SSH (å preferred).
I Cloning and syncing with remote Repositories is discussed later!
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Commands
Inspecting the Repository

Check Repository State
I Inspect the working set with git status.

I Lists files on the Index (planned for next Commit).
I Lists changed files that are not on the Index.
I Lists deleted files that are still present in the Repository.

I Check the current Branch: git branch.
I There is always the master Branch.
I You can see which Branch is currently active.

I Check Commit history with git log.
I See all Commits of the current Branch.
I Check out where the HEAD reference is pointing.
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Commands
Inspecting the Repository

Inspecting a Commit
I Use git show <Commit> to inspect a specific Commit.

I Can be given a Commit hash, a Branch name or another reference.
I Shows the files that have changed.
I Shows individual lines that have been added or deleted.
I Show changes relative to previous Commit.
I Changes are displayed properly only for text-based files (e. g. program sources, LATEX files, etc.)

I Differences between Commits: git diff <Commit1> <Commit2>.
I Useful to manually compare two Commits.
I Also get information on every changed line.
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Commands
Creating New Commits

Working with the Index

I In order to create a new Commit, you need to populate the Index.
I Add new files to the Index with git add <file>.

I You can use Glob Expressions like git add *.tex to add all .tex files in the current directory
to the Index.

I You can use git add -u to add all changed files to the Index.
I If you edited a file, it will now be on the Index.
I If you deleted a file manually, the file deletion will be on the Index.
I If you created a new file that is not in the Repository, it will not be on the Index. Perform

git add <file> separately.
I To check which files are on the Index use git status.
I To remove a file from the Index again use git reset <file>.
I To delete a file from disk and put the deletion on the Index use git rm <file>.

I If you only want to delete the file from the Repository but not from disk use
git rm --cached <file>.
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Commands
Creating New Commits

Ignoring Files
I You can configure your environment that you can perform git add * and not add any

garbage.
I You may want to exclude certain directories or file types from ever getting in the Repository.

I Binary files that you can generate automatically (e. g. compiled programs, FPGA bitfiles,
compiled LATEX files, ...).

I Log files that are useless.
I Local configuration files that are bound to your computer but are useless for other people (e. g.

Eclipse workspace config, ...)
I You can write a .gitignore file (the dot is important).

I List of files and directories that are ignored by Git.
I Can contain Glob Expressions.

I Ignore every .txt file: *.txt.
I Ignore log files only in Repository root: /*.log.
I Ignore all directories named “build”: build/.

I Check with git status that it does not report useless “untracked files”. Populate your
.gitignore until git status does not report any false positives any more.
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Commands
Creating New Commits

Ignoring Files (2)
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Commands
Creating New Commits

Creating a Commit

I When you are satisfied with the status of the Index, you can create the Commit.
I Commit the Index with git commit.
I The configured text editor will open and you need to enter a Commit message.
I Make it a useful message that describes what exactly you did (e. g. not “Changes of today”).
I You can also directly specify the message without text editor:

git commit -m “my message”.
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Commands
Branches

Branches
I Inspect current Branch with git branch.
I Create new Branch with git branch <name> [<commit>].

I Creates the Branch with the given name.
I Optionally creates the Branch based on the given Commit hash.

I Change the Branch with git checkout <branch>.
I Potentially changes the content of files managed by Git.
I Will not touch untracked files.
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Commands
Branches

Deleting Branches

I Delete a Branch with git branch -d <branch>.
I If Git complains, there are Commits on that Branch that are not otherwise referenced.
I If you delete the Branch, you will lose data!
I Either merge the Branch somewhere else before deleting.
I Or forcefully delete the Branch with git branch -D <branch>. You have been warned.
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Commands
Branches

Merging Branches
I You normally keep your “golden” working version on the master Branch.
I It is good practice to never publish stuff on master that is obviously broken/work in process.
I Develop your stuff on an extra Branch. Test it extensively. Then merge it to master and

delete your development Branch.
I To merge a Branch:

1. Switch to the target Branch.
2. Run git merge <other-branch>.
3. Potentially resolve conflicts.

I git status will tell you what is going on.
I Manually go through the files and decide what shall be used.
I Commit your changes.

A B C D

E F

G
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Commands
Branches

Merging Branches (2)
I If you can merge directly, no conflicts exist.
I This is the case if the set of files modified on the different Branches is disjoint.
I Special case: The target Branch did not diverge: fast-forward (no separate merge Commit

exists).
I Otherwise, Git does not know what to do. You need to inspect all offending files.

Branch master Branch test Merge

I When you are done, git add the changed files.
I Commit your changes.
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Commands
Emergency Help

Emergency Help

I Sometimes you screw up your Repository.
I Accidentally have garbage in a Commit (add large binary data to Repository).
I Deleted important files.
I A screwed-up merge.

I Direct help (Warning: These commands can lose you data):
I git checkout -- <file>: Restore/Reset a file to the version from the Repository.
I git reset --soft <Commit>: Sets HEAD to the given Commit but does not touch anything.
I git reset [--mixed] <Commit>: Resets the Index but does not touch the working directory.
I git reset --hard <Commit>: Resets Index and working directory to given Commit (this may

cost you unsaved data).
I There is a tremendously helpful website on how to “un-screw” your Git:

https://sethrobertson.github.io/GitFixUm/fixup.html

Florian Beenen Introduction to Git 29.01.2021 28/48

https://sethrobertson.github.io/GitFixUm/fixup.html


Work with Remotes

Work with Remotes
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Work with Remotes
Setting up Remotes

Remote Repositories

I Until now we only worked on our local machine.
I Git becomes very useful when sharing the Repository.

I Other people can work on the Repository.
I You have a graphical overview with GitHub/GitLab.
I You can use external services for automation.

I I personally recommend to use GitLab:
I It is free.
I You have unlimited private projects (GitHub has this as well now).
I You have free quota on automated jobs (CI-pipeline).
I The UI is way more intuitive than GitHub (for me at least).

I Create a free account here: https://gitlab.com/users/sign_up.

Florian Beenen Introduction to Git 29.01.2021 30/48

https://gitlab.com/users/sign_up


Work with Remotes
Setting up Remotes

Register SSH Key
I In order to synchronize with the remote Repository, it is best to register your SSH public key

with GitLab.
I Go to your profile picture → Settings → SSH Keys.
I Obtain your SSH key ( cat ˜/.ssh/id_ed25519.pub).
I Paste it in the text box.
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Work with Remotes
Setting up Remotes

Clone a Repository
I You can create a new Repository via the web UI.
I You can clone it via the Clone button, use SSH.
I Get your terminal and enter git clone <ssh-url>.
I Example:

git clone git@gitlab.ziti.uni-heidelberg.de:myuser/testproject.git.
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Work with Remotes
Setting up Remotes

Inspecting the Remote

I Your local Git Repository that you cloned from GitLab is now linked to GitLab.
I This “link” is called a Remote.
I Check out your Remotes by executing git remote -v.
I By default the Remote is called origin.

Florian Beenen Introduction to Git 29.01.2021 33/48



Work with Remotes
Synchronizing the Repository

Synchronizing with the Remote
I When you issue Commits locally, you need to send them to the Remote as well.

I git push will send your local Commits.
I If you get errors, the Remote may have Commits that you don’t know about (e. g. by someone

else). You need to load these Commits first.
I When the Remote is updated you need to download the new Commits.

I Load the Commits with git fetch.
I Merge them with your local Branch.
I Use git pull to perform git fetch and git merge simultaneously.
I You will get conflicts if fast-forward is not possible.
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Work with Remotes
Synchronizing the Repository

Evacuation Plan

https://repository-images.githubusercontent.com/43623432/e3756280-e50c-11e9-877f-24272543fd9c
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Work with Remotes
Synchronizing the Repository

Evacuation in Large Companies

https://www.reddit.com/r/ProgrammerHumor/comments/9xfzaj/our_git_repo_requires_every_commit_to_have_a/
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Work with Remotes
Automated GitLab Jobs

Automated GitLab Jobs

I You can trigger automated actions in GitLab:
I When a Commit to master is made.
I When a Commit is made that updates .tex files.
I On a regular basis, e. g. every Wednesday on 09.00h.
I ...

I Automation is based on Docker:
I You create or supply a base image: Basically a throw-away Linux instance with specific

configuration.
I Docker container ensures that the automated job has all the software it needs in the correct

version to create reliable output.
I Get Docker containers at: https://hub.docker.com/

I Configuration is done in .gitlab-ci.yml which must be located in the Repository’s root
directory.
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Work with Remotes
Automated GitLab Jobs

Example: Automated LaTeX Compilation

I If you have LATEX in your Repository, you can automatically compile a PDF.
I You may use my Docker image fbeenen/texlive. Has the following stuff installed:

git unzip curl openssh-client texlive-full.
I YAML files are sensitive with regard to whitespace. Do not mix tabs and spaces. Use the

correct amount of indentation.
I Minimalistic .gitlab-ci.yml:

1 image : fbeenen / t e x l i v e
2

3 b u i l d :
4 s c r i p t :
5 − l a texmk −pdf r a y t r a c e . t e x
6 a r t i f a c t s :
7 paths :
8 − "∗ . pd f "
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Work with Remotes
Automated GitLab Jobs

Example: More Sophisticated LaTeX Compilation
1 image : fbeenen / t e x l i v e
2 v a r i a b l e s :
3 PDF_PREFIX : " MySupe r f i l e "
4 b u i l d :
5 b e f o r e _ s c r i p t :
6 − apt−get update && apt−get −y i n s t a l l wget
7 s c r i p t :
8 − cd l a t e x
9 − s ou r c e a u t o b u i l d . sh

10 − bui ldPDF ma i n f i l e . t e x
11 − mv ∗ . pd f . . /
12 − cd . . / p r a e s e n t a t i o n /
13 − b u i l d P r e s e n t a t i o n myPre sen ta t i on . t e x
14 − mv ∗ . pd f . . /
15 on l y :
16 changes :
17 − "∗∗/∗ . t e x "
18 a r t i f a c t s :
19 paths :
20 − "${PDF_PREFIX}∗ . pd f "
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Work with Remotes
Automated GitLab Jobs

Artifacts

I Your .gitlab-ci.yml should specify some output products: Artifacts.
I These serve two purposes:

I They are used to deliver files to the next stage of the pipeline.
I They can be downloaded by the user.

I Multiple pipeline stages can be chained: For software e. g. “Build”, “Test”, “Deploy”.
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Work with Remotes
Automated GitLab Jobs

Project with Multiple Pipeline Stages
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Exercise

Exercise
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Exercise

Create Simple Repository

A First Repository
I Log onto a Linux machine (e. g. physik1.kip.uni-heidelberg.de) and start a Terminal.
I Create a new Git Repository in an empty directory.
I Create at least three text files and fill them with a few lines.
I Commit all files to the Repository.
I Add a new Branch and switch to the new Branch.
I Create another new file with some content.
I Commit the new file to the newly created Branch.
I Switch back to the master Branch.
I Delete a file and commit the deletion to the Repository.
I Merge your new Branch to the master Branch (there should be no conflicts)!
I Provide a screenshot that you managed to merge the two Branches without conflict.
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Exercise

Merging by Hand

Merging Conflicts
I Select one file of your Repository and change it on the master Branch.
I Switch to your other Branch and change something else in the same file.
I Make sure, both changes are committed to the respective Branch.
I Now try to merge your additional Branch to the master Branch. This should yield a conflict.
I Resolve the conflict by editing the conflicting file.
I Commit the changes to the master Branch.
I Verify with git log that the Commits from the other Branch are now visible on master.
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Exercise

Working with GitLab

Import the Project in GitLab
I Log into GitLab and create an empty project (do not initialize it with a Readme.md).
I Register your SSH key with GitLab.
I Get the SSH URL of the newly created project (via the “Clone” button).
I Add the GitLab project as Remote to your existing local Git Repository via

git remote add origin <url>.
I Push your local Repository to the Remote via git push.
I Provide a screenshot from GitLab (e. g. the Commit graph under “Repository” → “Graph”)

to prove that everything works.
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Exercise

Working with GitLab (2)
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Exercise

Automation

GitLab CI
I We want to automatically build C program files.
I Add a new .gitlab-ci.yml.
I You can use a wizard for this: Click on .
I You can use the C++ template if you don’t want to write the file from scratch. Delete

everything from the template that you don’t need.
I Make the .gitlab-ci.yml compile a file called program.c. The generated binary shall be

called myTool.
I Ensure that the compiled binary file is included in the Artifacts.
I Write a small C program that does something useful (e. g. print out the first 10 square

numbers) and commit it to the Repository.
I Also ensure that your .gitlab-ci.yml is located at the Repository root and committed to

the Repository.

Florian Beenen Introduction to Git 29.01.2021 47/48



Exercise

Automation (2)

GitLab CI
I ...
I Run the pipeline via “CI/CD” → .
I Debug your script by inspecting the log output until the pipeline does not fail anymore.
I If everything works you can download your executable in a ZIP directory from the Artifacts.
I Obtain the executable and run it.
I Provide a screenshot that your program runs and does something useful ©.
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