

Avalanche Photodiodes Silicon Photomultiplier

Peter Fischer

Silicon Detectors – Photo Detectors

© P. Fischer, ziti, Uni Heidelberg, Seite 1

- Reminder: Classical Photomultiplier
- APD Working Principle
- Classical SiPM
 - Working Principle & Properties
 - Recent Developments
- SiPMs in CMOS Technologies
- Applications
 - Mainly work of my own groups

PHOTO MULTIPLIER TUBE

,Classical' Photomultipliers

Silicon Detectors – Photo Detectors

PMT Working Principle 'Artists View'

Photomultipliers

- 10 -14 'Dynodes'
- Amplification 10⁶ 10⁷ ____
- Signal is ~ proportional to # photons
- Mostly round, Ø from 1...50 cm
- Segmented anodes available ('Multi Anode PMT'):

Hamamatsu

Multi-Anode PMT Hamamatsu H8500D $5 \times 5 \text{ cm}^2$, 8×8 pixels 12 Dynodes 185 nm...650 nm Gain 1.5 \times 10⁶

Photomultiplier Pros & Cons

Pros

- Single Photon sensitivity
- Low 'dark noise' (e.g. hits with no photons)
- UV and IR sensitive (depends on window and photocathode)
- Fast (rise time < ns)

Cons

- Mechanically sensitive, breakable
- Expensive (but not per area!)
- Need high voltage (kV) / large power (divider for dynode volt.)
- Large
- Sensitive to (even low) magnetic fields
 - Depends on orientation wrt field
 - Can be a KILLER for many applications (HEP experiments often have strong magnets, MRT, ...)

Example: Very Large PMTs at Super-Kamiokande

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Silicon Detectors – Photo Detectors

© P. Fischer, ziti, Uni Heidelberg, Seite 8

AVALANCHE PHOTO DIODES (APDS)

- Carriers drift from the depletion (collection) region to the amplification region
- Charge carriers are accelerated and create secondary ionization
 → an *avalanche* is created, leading to a large charge (10⁵-10⁶ eh pairs)
- n⁺/p⁺/p⁻ or p⁺/n⁺/n⁻ structure possible (amplify via electrons / holes)
- Some issues:

RUPRECHT-KARLS-

- Field strength must stay below breakdown. Critical at edges
- Photon feedback can keep avalanche 'burning'. It must be stopped by lowering the voltage on the device

Field in Avalanche Diode (100V / 400V)

APD Construction

- Absorption / Drift region should be thick (sensitivity)
- High field region is created by strongly doped pn-junction
 - High field must still be below Si-breakdown (3 \times 10⁷ V/m)
 - Typical field $\sim 10^7$ V/m = 10^5 V/cm = 10 V/µm

Sensitivity (for photons)

- Device is sensitive for photons 'only' in depletion region (DR) (some carriers may be seen by diffusion)
 - DR starts in some depth, given by depth of (here) p⁺ implant
 - DR ends somewhere in the p- region (depending on bias)

- Photon illumination is normally from the top
 - UV photons are absorbed at the surface and may not reach the DR (jargon: 'dead layer')
 - IR photons may be absorbed 'below' the DR

Edge Breakdown

At the edge of the high field region, the field changes from 'parallel plate' to '1/r'. This produces highest field at the edge. There may be breakdown at the edge before the area reaches amplification!

 The usual solutions is a lower doped region at the edge ('guard ring'):

Effect or Guard Ring

Compare structures without / with guard

From: Lee, Rücker, Choi:

Effects of Guard-Ring Structures on the Performance of Silicon

Avalanche Photodetectors Fabricated With Standard CMOS Technology

IEEE Electron Device Letter, Volume: 33, Issue: 1, Pages: 80 - 82

- Linear (Proportional) Mode
 - Bias is below ,breakdown voltage'
 - Moderate Gain ~10¹-10³
 - Signal is *proportional to number* of photons
 - Required for instance in Calorimetry (measure scintillation light)

Geiger Mode = Photon Counting Mode

- Bias voltage is (slightly) above breakdown voltage
- Single photons lead to 'infinite' signal (by re-triggering through (photon) feedback mechanisms)
- Very high gain ~ 10^{6}
- Signal is *independent* of primary # of photons
- Needs 'quenching' circuit to lower bias voltage after a hit to stop the avalanche
- APD is insensitive after 'quenching' (until HV is back again)

Quenching Methods (Geiger Mode)

- Passive quenching with series resistor:
 - The large signal current leads to a voltage drop at the bias resistor so that HV lowers

Active quenching:

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- A circuit detects a hit
- A switch (transistor) lowers the voltage
- Better control
- Lower 'afterpulsing'
- But more complicated

Summary: Pros/Cons of of APDs

- Operation at low gain ('*linear mode'*)
 - signal is proportional to primary charge,
 i.e. we get a pulse height information.
 - But gain is lower
- Operation at high gain ('Geiger Mode')
 - High gain / sensitivity
 - No amplitude information
 - HV must be lowered when a signal occurs (normally with series resistor)
 - This leads to long dead times
- A single defect kills to hole device!
 - Large area APDs are very expensive (>1000€)
- HV setting is delicate
 - Changes with temperature

SILICON PHOTO MULTIPLIERS (SIPM, MPPC, SI-SSPM...)

Idea SiPM

Problem of APD: gain is low in (often preferred) linear mode

Therefore:

- Add many APDs in parallel with separate quench resistors
- Each SPAD (Single Photon APD) works in Geiger Mode
- Breakdown of a single SPAD creates only a small signal
- The total signal is proportional to the number of fired cells, i.e. to the number of detected photons
- Devices are called
 - SiPM: Silicon Photo Multipliers
 - MPPC: Multi-Photon Pixel Counter
 - Si-SSPM: Silicon Solid State PMT
 - ...
 - (name depends on vendor..)

SiPM Geometry

- SPAD cell size is in the order of 50 × 50 µm²
 - \rightarrow ~ 10² -10³ SPADs per mm²
- Device area can be up to 8 × 8 mm²
 - > 10.000 SPADs
 - *Single* cell/photon signal becomes very small for large SiPM!

Properties SiPMs

- + Each SPAD operates in Geiger mode @ highest gain (\rightarrow sensitivity!)
- + Output = Sum of individual signals, i.e. proportional to # of fired cells!
- + Only fired SPADs are insensitive after a hit until they recharge
- + No external resistor/quenching required
- + Fault tolerant to single bad SPADs
- Fill factor is reduced (resistors, guard structures

 1mm

 Imm

 I

© P. Fischer, ziti, Uni Heidelberg, Seite 22

Silicon Detectors – Photo Detectors

Quench Resistor

- Mostly Poly-Silicon
- Resistor value critical for operation
- Manufacturing is difficult: strong dependence of sheet resistance on doping concentration

Breakdown Voltage, Gain

- When V_{bias}>V_{BR} (the breakdown voltage), the device starts to amplify
- V_{BR} depends on temperature
- The interesting quantity defining gain is the overvoltage

$$\Delta V = V_{OV} := V_{bias} - V_{BR}$$

A firing cell will develop an avalanche until V_{bias} drops to V_{BR}, i.e.:

an avalanche discharges a cell by ΔV

- The charge needed for this is just $Q = C_{cell} \times \Delta V$.
- Because this charge is generated starting with one electron (charge q), the gain is just g = Q/q an thus $\sim \Delta V$
- (Small) cells with small capacitance need lower gain and typically have less dark counts

Signals of multiple photons

- A SiPM can resolve the number of photons = number of fired cells
 - This works if each firing cell produces exactly the same signal at the SiPM terminals

Equivalent Electrical Circuit

- Each cell has
 - Diode capacitance C_d (of SPAD)
 - Quenching resistor R_q
 - A parasitic capacitor C_q between SPAD and bias line
- The firing can be modeled by a current spike which discharges C_d from the overvoltage until the discharge stops
- The parasitic C_q capacitor is *very* important to make the discharge current visible as a voltage signal!!!
 - Not further discussed here in details... sorry

Rq	393 kΩ
Vbr	31.2 V
Q	175.5 fC
Cđ	34.6 fF
Cq	12.2 fF

SiPM ITC-irst

N=625, Vbias=35V

27.8 pF

Typical values:

Model

Cg

parameter

Signals of one cell for small / large SiPM

- The N-1 'other' cells are a (capacitive) load to the 'firing' cell
- Signal shape depends on
 - N (area of device)
 - termination resistor (here 50 Ohm)

Images by Claudio Piemonte (PBK)

Silicon Detectors – Photo Detectors

 Depends on size of Micro Cells (smaller -> more edge -> worse fill factor)

From SensL Overview Article

Silicon Detectors – Photo Detectors

© P. Fischer, ziti, Uni Heidelberg, Seite 31

Photon Detection Efficiency (PDE)

- = Fraction of detected photons. Depends on
 - Fraction of really sensitive area (cell-cell isolation, losses from traces, resistor)
 - Photon reflexion at surface (\rightarrow Anti Reflex Coating, ARC)
 - Probability for Photon-Absorption (depends on wavelength) < 1
 - Probability to trigger an avalanche < 1
 - Dead time after a pulse or a dark hit (up-charging)
- PDE increases with overvoltage (but noise also increases!)

Spectral Sensitivity

• Another Example PDE vs. λ (on active area, must add fill factor!):

(Two types of SiPMs from FBK, Trento)

- Fired cells cannot fire again (in short time)
- This reduces the 'detected' signal for many photons
 - Largest signal is obviously = # of SPAD cells
 - SiPMs with many cells are better here (but have smaller PDE)
- This effect makes amplitude spectra artificially 'narrow'
 - Must be corrected for

On average:

$$N_{seen} = N \left(1 - e^{-\frac{N_{fired}}{N}} \right)$$

© P. Fischer, ziti, Uni Heidelberg, Seite 34

(Linearity Formula: Derivation)

- Assume N cells on the detection area
- The probability of a cell to fire when hit by a photon is ε .
- We drop k Photons on the detection area.
- We look what happens in one particular cell, say, cell 13:
 - The *probability* that *one* photon fires *that* cell is ϵ/N .
 - The prob. to **not** hit **that** cell by the one photon is $1-\epsilon/N$
 - The prob. to **not** hit **that** cell by **all k** photons is $(1-\epsilon/N)^k$
 - Therefore the prob. to *hit* that cell by any of the k photon is $1-(1-\epsilon/N)^k$.
- We add up this probability for all N cells. Therefore, the average number of hit cells is N times this value:

$$\langle \text{Signal}(k) \rangle = N \left(1 - \left(1 - \frac{\epsilon}{N} \right)^k \right)$$

• For large N and small ε , this converges to $N\left(1 - Exp\left[-\frac{\varepsilon K}{N}\right]\right)$

Temperature Dependence

- Breakdown voltage rises ~linear with temperature
 - This leads to a gain shift
 - Strong effect: Needs correction

Time Behavior

- Very fast!
- Rise time <1ns (depends on readout circuit)</p>
- Recovery time ~ 70ns
- At very fast recovery: After-pulsing / Crosstalk (?)

Noise / Dark Count Rate (DCR)

- Thermally generated electrons ('leakage current') can trigger avalanches
- Their # depends on depleted volume and thus of $\sqrt{\Delta V}$
- Depends on temperature (low $T \rightarrow$ low leakage current)
- Depends on gain (high gain \rightarrow higher trigger probability)
- Typical DCR are ~100 KHz 1 MHz / mm²

Summary SiPM

Pros

- High Sensitivity (higher QE than 'most' classical PMTs)
- Linear Signal (up to saturation limit)
- Low Bias voltage
- Insensitive to magnetic field
- Small
- Cheap (?, not for large area)
- Short recovery time

Drawback:

- Larger dark noise wrt. PMT
- Small electrical signal requires amplifier
- Requires control of temperature
Not discussed here

- Noise in avalanche process
- Crosstalk between pixels (an avalanche in one SPAD creates photons which trigger another SPAD)
- After-pulsing (similar, but delayed)
- Timing jitter from SPAD to SPAD
- Homogeneity of parameters (overvoltage)

•

NOVEL / FUTURE DEVICE VARIATIONS

ruprecht-karls-UNIVERSITÄT HEIDELBERG

New Development: Avalanche Drift Diode

- Carriers first drift laterally to an amplification region
 - Device is sideward depleted
 - Electrons first drift 'vertically' to potential minimum, then laterally
- Only small avalanche regions
- large area, full depletion \rightarrow very high PDE > 80%
- Bad time resolution (drift time depends on position)
- High dark rate (large depleted volume, 'more than needed')

- Quench resistor is vertical to backside of device
 - Value is given by device area, wafer thickness, bulk resistivity
- p⁺ und n⁺ electrodes on array are also contacts
- Cells are isolated by depletion regions

- Requires very thin (50-100µm) wafers
- Very high fill factor!
- Very simple technology (except thin wafer..)
- Backside contact $! \rightarrow$ Could flip readout chip

SiMPI Wafer

Pros

- Very high fill factor
- Simple technology, no Polysilicon required, coarse lithography → high yield, low cost

Cons

- Vertical quench resistor

 Depends on wafer thickness → thin wafers for small SPAD
 is a JFET → rel. large recovery times
- Work in progress (@2012).
 Further improvements expected.

APPLICATIONS:

(CALORIMETRY), PET

Time Resolution with Crystals

ruprecht-karls-UNIVERSITÄT

HEIDELBERG

Silicon Detectors – Photo Detectors

Application: Calorimeter

- Calorimeters measure the energy of particles
- These are stopped in an absorber (by electromagnetic and strong interactions)
- Absorbers are often scintillators which produce light proportional to deposited energy
- Light must be detected
 - In magnetic field
 - Fast
 - Many channels

Application: Tomography (PET)

- Detection of scintillation photons (von 511 keV y)
- Time resolution required
 - For coincidence: some 5-10 ns
 - For time of flight: some 100 ps
- Compact
- Works in magnetic field (MRI)

Tomograghgeometrie mit 45 Detektormodulen

Positron Emission Tomography (PET)

ruprecht-karls-UNIVERSITÄT

HEIDELBERG

Gamma Detection Module

• We have built a very compact module for detection of 511 keV gammas:

Backside: SiPM Arrays

Challenging assembly!

Silicon Detectors – Photo Detectors

Pe

Performance in 1:1 coupling

- CRT ~210 ps (@ 30°C) is State of the Art!
 - Note that this corresponds to a single channel sigma of ~65 ps!

Direct Time-of-Flight Measurements

Position Resolution

8 x 8 SiPMs, crystals of 1.3 x 1.3 x 10mm³, Simple 2D Gauss fit.

Silicon Detectors – Photo Detectors

MAKING SIPMS POSITION SENSITIVE

Linear 'SeSP' (Sensitivity Encoded SiPM)

V. Schulz et al., Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI, Phys. Med. Biol. 58 (2013) 4733-4748

Extension to 2D device

Works in principle. BUT: Crystals must be placed very precisely...

Omidvari & Schulz: Characterization of SESP with 1-D and 2-D Encoding for high Resolution PET/MR, IEEE TNS, Vol. 62, No. 3, June 2015

Find more 'general' assignments of SPADs to readout channels ('colours')

Get a corresponding reconstruction function¹ to find (x,y) from the 4 S_{i,i}.

Here:
$$\vec{r}_{rek} = \sum_{i,j} S_{i,j} \vec{C}_{i,j}$$
 (center of Gravity, CoG)

Note: Other functions & only 3 corners are possible!

ISiPM Idea

- Assign each SiPM cell to one of N = 4 corners (□, ■, ■, ■, ■)
- Do this such that the *local* density of cells matches the Weight Function(s)

'as good as possible'...

Algorithm to Obtain Cell Assignment

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

Silicon Detectors – Photo Detectors

Larger Maps (100 × 100)

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Systematic Reconstruction Error

- *Discretized* weight function → *systematic* reconstruction errors
- Use square photon clusters ('crystals') for simple study

A: Systematic Reconstruction Error vs. Cluster Size

Example: ISiPM with 40 × 40 cells

Averaged over all (integer) cluster positions fully on SiPM (σ given in % of SiPM size)

Systematic Reconstruction Error vs. Cluster Size

- How small crystals can we identify?
 - Crystals with pitch p can be identified if $~~\sigma_{\text{Err}}$ « p

ISiPM Mapping is 'smoother' than 'Stripe' Mapping:

Silicon Detectors – Photo Detectors

ruprecht-karls-UNIVERSITÄT

HEIDELBERG

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Large SiPM

Silicon Detectors – Photo Detectors

Putting all together: Flood Map Simulation

- Example for device simulation:
 - ISiPM with 100² cells (e.g. 7.4 mm²)
 - crystals of 12 × 12 cells (0.9 mm²)
 - Array of 7 × 7 crystals (tilted to show robustness)
 - Fire 250 random cells / crystal
 - noise per corner: 2 cells (rms)
- Circles O show systematic, (known) offsets
- Hit is associated to closest
- 7% of hits are associated to wrong crystal (offset by 1)

MAKING REAL DEVICES...

Technology Limitations

With one available metal layer

- large capacitances, series resistance

- short circuit risk, crosstalk
- area loss

With two available metal layers

+ less crosstalk

One Metal Layer Design

- Fabricated at FBK, Trento, Italy
- Frame Layout & Assignment by Hi

ruprecht-karls-UNIVERSITÄT HEIDELBERG

The First Test....

Silicon Detectors – Photo Detectors

Array of 2 mm Crystals

- No source (natural LYSO radioactivity, mix of many amplitudes.)
- No cuts on data (energy, odd events)

Observation: Positions compressed to center

Silicon Detectors – Photo Detectors

Array of 1.3 mm Crystals

10k events, integral, COG, *No* cuts.

- 1.3mm crystals can still be resolved on 7.4mm device with 100² cells
- Note: Scope Trigger favors one corner!

A Better & Faster Setup

- Use discrete ADCs & USB readout
- 'Fair' trigger

Silicon Detectors – Photo Detectors
1.0 mm LYSO Crystals

- Flood map: Place source over array, plot reconstructed COGs
- **1 mm very clearly resolved** (~ 7.4mm active area)

Sub-mm Resolution and DOI

Stack 1mm crystals (very improvised, but it works!)

- 0.7mm distance clearly resolved !
- DOI ('Depth of Interaction') works !

Professor

- I tried...
- After man

Patentansprüche

Ortsempfindlicher Detektor zur Detektion von 1. Photonen- oder Teilchenverteilungen, mit - einer Detektor-Empfangsfläche (1), die durch mehrere Detektorzellen (2) aus einzelnen Detektorelementen gebildet ist, und - einer Anzahl N an Auslesekanälen (5) für die Detektorzellen (2), die geringer als die Anzahl an Detektorzellen (2) ist, - wobei jede für die Detektion genutzte Detektorzelle (2) wenigstens einem der Auslesekanäle (5) zugeordnet und mit diesem verbunden ist, und - die Zuordnung der Detektorzellen (2) zu den Auslesekanälen (5) derart gewählt ist, dass aus Signalen der Auslesekanäle (5) die Position eines Schwerpunktes einer auf die Detektor-Empfangsfläche (1) auftreffenden Photonen- oder Teilchenverteilung bestimmt werden kann.

This restriction was a big mistake

Competition: Linear Graded SiPM (LG-SiPM)

- Collect row/column contributions with (equal) resistors in pixels
- Generate linear gradients in x- and y in periphery
- More complicated, but one pixel chc, chD already is reconstructed correctly! ChA ChB

A. Gola, A. Ferri, A. Tarolli, N. Zorzi, C. Piemonte:

A Novel Approach to Position-Sensitive Silicon Photomultipliers: First Results

Silicon Detectors – Photo Detectors

SIPM IN A CMOS TECHNOLOGY

The Fraunhofer SPAD process

 Fraunhofer Institute IMS (Duisburg, Germany) has modified their in-house 0.35µm 4M2P-CMOS technology to obtain good SPADs

- Very encouraging properties were published:
 - Low Dark Count Rate ('DCR') (~ 20kcps / mm² @ RT)
 - Good uniformity (~ 95% SPADs have similar DCR)
 - Low after pulsing (< 1%)
 - Good Photon Detection Efficiency ('PDE')(~ 40% for blue light)

SPAD Readout: 4 Options

Pixel Architecture

(slightly simplified schematic)

Chip Photo: Pixel Array

Silicon Detectors – Photo Detectors

Chip Photo: Top

Overall Architecture IPD1

- Design bug: x-addressing in matrix forgotten → can only kill full rows
- All other tested parts work as expected

Silicon Detectors – Photo Detectors

Overall Architecture IP[02]

First test setup

- 'quick & dirty': recycle FPGA board from our group....
- no cooling \rightarrow run mostly @ ~30°C
- 'low' data rate (USB2.0)

'First Light'...

- Cover Chip with Alu-Mask with rectangular hole
- Illuminate Chip during integration window

Silicon Detectors – Photo Detectors

DCR at Various Overvoltages

Silicon Detectors – Photo Detectors

- Overvoltage = OV = 4,5,6,7 V, Measured @ 20°C (DCR is lower when cold)
- DCR is referred to useable SPAD area (inner border of M1 shield)

Multiplicity Rates

- Chip generates a *true* multiplicity of ColumnOR signals (i.e. groups of 88)
- Rates depend strongly on Coincidence time window (set by pixel monoflop)

Multiplicity Output	Coinc. ~20ns	Coinc. ~40ns	Coinc. ~60ns	Coinc. ~80ns	Coinc. ~100ns	Coinc. ~130ns
≥ 1	217882	324620	451114	528760	591078	652704
≥ 2	4075	7192	12370	18721	25583	34005
≥ 3	43	99.9	238	479	767	1203
≥ 4	0.4	1.4	4.8	11.2	20.1	36

Rates in Hz, T \sim 30°C, OV = 4.0 V

- No pixels killed in this measurement
- Can reach very low noise trigger rates of ~Hz!
- Measurement agrees quite well with theory
- Issue: dispersion in coincidence times (improved in IDP2)

Setup & Measurements by Manfred Kirchgessner and Michael Schork

Laser Scan: 2D Response

- Scan over region of 1.5 × 2.0 pixels in 30 × 40 steps (~ 2.8 µm / Step)
- Plot # hits in one pixel for 3000 laser shots (~ 4V overvoltage, I_{SPAD} ~6µA)
 - Notes: still need to calibrate x-y-steps better & run @ lower intensitiy..

LYSO Arrays with VERY small pitches

- Crystal Pitches: 0.33 / 0.48 / 0.88 mm, height = 10 mm
- 65µm thick 'Enhanced Specular Reflector' foils

LYSO Arrays with 0.48 mm pitch (!)

- Measured at ~30°C, OV = 3 V
- Trigger on Mult \geq 4, 200 ns integration

Overlay of 20k events

Single events

Silicon Detectors – Photo Detectors

