

(Amplifying) Photo Detectors:

Avalanche Photodiodes Silicon Photomultiplier

Peter Fischer

Silicon Detectors – Photo Detectors © P. Fischer, ziti, Uni Heidelberg, Seite 1

- § Reminder: Classical Photomultiplier
- **APD Working Principle**
- § Classical SiPM
	- Working Principle & Properties
	- Recent Developments
- SiPMs in CMOS Technologies
- Applications
	- Mainly work of my own groups

PHOTO MULTIPLIER TUBE

'Classical' Photomultipliers

Silicon Detectors – Photo Detectors © P. Fischer, ziti, Uni Heidelberg, Seite 4

PMT Working Principle 'Artists View'

Silicon Detectors – Photo Detectors **COV** COV COVID-10 COVID-10 COVID-10 COVID-10 COVID-10 COVID-10 COVID-10 COVID-1

Photomultipliers

- § 10 -14 'Dynodes'
- Amplification 10⁶ 10⁷ \sim
- Signal is \sim proportional to # photons
- Mostly round, \varnothing from 1...50 cm
- § Segmented anodes available ('Multi Anode PMT'):

Hamamatsu

Multi-Anode PMT Hamamatsu H8500D 5×5 cm², 8×8 pixels 12 Dynodes 185 nm…650 nm Gain 1.5 × 106

Photomultiplier Pros & Cons

§ Pros

- Single Photon sensitivity
- Low 'dark noise' (e.g. hits with no photons)
- UV and IR sensitive (depends on window and photocathode)
- Fast (rise time < ns)

§ Cons

- Mechanically sensitive, breakable
- Expensive (but not per area!)
- Need high voltage (kV) / large power (divider for dynode volt.)
- Large
- Sensitive to (even low) magnetic fields
	- Depends on orientation wrt field
	- Can be a KILLER for many applications (HEP experiments often have strong magnets, MRT, …)

Example: Very Large PMTs at Super-Kamiokande

RUPRECHT-KARLS. UNIVERSITÄT HEIDELBERG

Silicon Detectors – Photo Detectors **Contract Contract Contr**

AVALANCHE PHOTO DIODES (APDS)

HEIDELBERG The Idea § Create a region with very high field by strong doping & external voltage amplification strong n doping strong n doping region strong p doping \mathcal{N} eak p doping weak p doping **Collection** region $\mathbf{\underline{\mathsf{L}}}\mathbf{\underline{\mathsf{L}}}$ E

- Carriers drift from the depletion (collection) region to the amplification region
- Charge carriers are accelerated and create secondary ionization \rightarrow an *avalanche* is created, leading to a large charge (10⁵-10⁶ eh pairs)
- n⁺/p⁺/p⁻ or p⁺/n⁺/n⁻ structure possible (amplify via electrons / holes)
- § Some issues:

RUPRECHT-KARLS-**UNIVERSITÄT**

- Field strength must stay below breakdown. Critical at edges
- Photon feedback can keep avalanche 'burning'. It must be stopped by lowering the voltage on the device

Field in Avalanche Diode (100V / 400V)

Silicon Detectors – Photo Detectors © P. Fischer, ziti, Uni Heidelberg, Seite 11

APD Construction

- § Absorption / Drift region should be thick (sensitivity)
- **Example 1** High field region is created by strongly doped pn-junction
	- High field must still be below Si-breakdown $(3 \times 10^7 \text{ V/m})$
	- Typical field \sim 10⁷ V/m = 10⁵ V/cm = 10 V/µm

Sensitivity (for photons)

- **Device is sensitive for photons 'only' in depletion region** (DR) (some carriers may be seen by diffusion)
	- DR starts in some depth, given by depth of (here) p^+ implant
	- DR ends somewhere in the p- region (depending on bias)

- Photon illumination is normally from the top
	- UV photons are absorbed at the surface and may not reach the DR (jargon: 'dead layer')
	- IR photons may be absorbed 'below' the DR

Edge Breakdown

• At the edge of the high field region, the field changes from 'parallel plate' to '1/r'. This produces highest field at the *edge*. There may be breakdown at the edge before the area reaches amplification!

• The usual solutions is a lower doped region at the edge ('guard ring'):

Effect or Guard Ring

• Compare structures without / with guard

From: Lee, Rücker, Choi:

Effects of Guard-Ring Structures on the Performance of Silicon

Avalanche Photodetectors Fabricated With Standard CMOS Technology

IEEE Electron Device Letter, Volume: 33 , Issue: 1, Pages: 80 - 82

- § **Linear (Proportional) Mode**
	- Bias is below , breakdown voltage'
	- Moderate Gain $\sim 10^{1}$ -10³
	- Signal is *proportional to number* of photons
	- Required for instance in Calorimetry (measure scintillation light)

§ **Geiger Mode = Photon Counting Mode**

- Bias voltage is (slightly) above breakdown voltage
- Single photons lead to 'infinite' signal (by re-triggering through (photon) feedback mechanisms)
- Very high gain $\sim 10^6$
- Signal is *independent* of primary # of photons
- Needs 'quenching' circuit to lower bias voltage after a hit to stop the avalanche
- APD is insensitive after 'quenching' (until HV is back again)

Quenching Methods (Geiger Mode)

- **Passive quenching with series resistor:**
	- The large signal current leads to a voltage drop at the bias resistor so that HV lowers

• Active quenching:

RUPRECHT-KARLS-**UNIVERSITÄT** HEIDELBERG

- A circuit detects a hit
- A switch (transistor) lowers the voltage
- Better control
- Lower 'afterpulsing'
- But more complicated

RIIPRECHT.KARIS **UNIVERSITÄT** HEIDELBERG

Summary: Pros/Cons of of APDs

- § Operation at low gain ('*linear mode')*
	- signal is proportional to primary charge, i.e. we get a pulse height information.
	- But gain is lower
- § Operation at high gain ('*Geiger Mode*')
	- High gain / sensitivity
	- No amplitude information
	- HV must be lowered when a signal occurs (normally with series resistor)
	- This leads to long dead times
- A single defect kills to hole device!
	- Large area APDs are very expensive (>1000€)
- HV setting is delicate
	- Changes with temperature

SILICON PHOTO MULTIPLIERS (SIPM, MPPC, SI-SSPM…)

Idea SiPM

- § Problem of APD: gain is *low* in (often preferred) *linear mode* Therefore:
- § Add *many APDs in parallel* with *separate quench resistors*
- § Each SPAD (Single Photon APD) works in *Geiger Mode*
- § Breakdown of a *single* SPAD creates only a *small signal*
- § The *total signal* is *proportional* to the number of fired cells, i.e. *to the number of detected photons*
- § Devices are called
	- SiPM: Silicon Photo Multipliers
	- MPPC: Multi-Photon Pixel Counter
	- Si-SSPM: Silicon Solid State PMT
	- \bullet ...
	- (name depends on vendor..)

SiPM Geometry

- SPAD cell size is in the order of $50 \times 50 \mu m^2$
	- $\cdot \rightarrow \sim 10^2$ -10³ SPADs per mm²
- **Device area can be up to 8** \times **8 mm²**
	- > 10.000 SPADs
	- *Single* cell/photon signal becomes very small for large SiPM!

RIIPRECHT.KARIS **UNIVERSITÄT HEIDELBERG**

Properties SiPMs

- + Each SPAD operates in Geiger mode ω highest gain (\rightarrow sensitivity!)
- + Output = Sum of individual signals, i.e. proportional to # of fired cells!
- + Only fired SPADs are insensitive after a hit until they recharge
- + No external resistor/quenching required
- + Fault tolerant to single bad SPADs
- Fill factor is reduced (resistors, guard structures

 $1mm$ 经营业 醛 Early SiPM Detail view of modern SiPM **Example 2.5 x 2.5mm**²

Quench Resistor

- Mostly Poly-Silicon
- Resistor value critical for operation
- § Manufacturing is difficult: strong dependence of sheet resistance on doping concentration

Breakdown Voltage, Gain

- When $V_{bias} > V_{BR}$ (the breakdown voltage), the device starts to amplify
- \blacktriangleright V_{BR} depends on temperature
- The interesting quantity defining gain is the overvoltage

$$
\Delta V = V_{\text{OV}} := V_{\text{bias}} - V_{\text{BR}}
$$

A firing cell will develop an avalanche until V_{bias} drops to V_{BR} , i.e.:

an avalanche discharges a cell by ΔV

- The charge needed for this is just $Q = C_{cell} \times \Delta V$.
- Because this charge is generated starting with one electron (charge q), the gain is just g = Q/q an thus $\sim \Delta V$
- § (Small) cells with small capacitance need lower gain and typically have less dark counts

Signals of multiple photons

- A SiPM can resolve the number of photons = number of fired cells
	- This works if each firing cell produces exactly the same signal at the SiPM terminals

- Each cell has
	- Diode capacitance C_d (of SPAD)
	- Quenching resistor R_{q}
	- A parasitic capacitor C_q between SPAD and bias line
- The firing can be modeled by a current spike which discharges C_d from the overvoltage until the discharge stops
- The parasitic C_q capacitor is **very** important to make the discharge current visible as a voltage signal!!!
	- Not further discussed here in details… sorry

Overvoltage = 3…6 V

SiPM ITC-irst

N=625. Vbias=35V

393 kQ

31 2 V

 175.5 fC

34 6 fF

 12.2 fF

 27.8 pF

Typical values:

Model

Ra

Vbr

O

Cd

 Cq

 Cg

parameter

Signals of one cell for small / large SiPM

- § The N-1 'other' cells are a (capacitive) load to the 'firing' cell
- Signal shape depends on
	- N (area of device)
	- termination resistor (here 50 Ohm)

Images by Claudio Piemonte (PBK)

Silicon Detectors – Photo Detectors © P. Fischer, ziti, Uni Heidelberg, Seite 30

§ Depends on size of Micro Cells (smaller -> more edge -> worse fill factor)

From SensL Overview Article

Figure 11, Typical fill factors and microcell numbers for a 1mm sensor from the C-Series product family.

Silicon Detectors – Photo Detectors © P. Fischer, ziti, Uni Heidelberg, Seite 31

Photon Detection Efficiency (PDE)

- = Fraction of detected photons. Depends on
	- Fraction of really sensitive area (cell-cell isolation, losses from traces, resistor)
	- Photon reflexion at surface $(\rightarrow$ Anti Reflex Coating, ARC)
	- Probability for Photon-Absorption (depends on wavelength) < 1
	- Probability to trigger an avalanche < 1
	- Dead time after a pulse or a dark hit (up-charging)
- PDE increases with overvoltage (but noise also increases!)

Spectral Sensitivity

• Another Example PDE vs. λ (on active area, must add fill factor!):

(Two types of SiPMs from FBK, Trento)

- Fired cells cannot fire again (in short time)
- This reduces the 'detected' signal for many photons
	- Largest signal is obviously = # of SPAD cells
	- SiPMs with many cells are better here (but have smaller PDE)
- § This effect makes amplitude spectra artificially 'narrow'
	- Must be corrected for

On average:

$$
N_{seen} = N \left(1 - e^{-\frac{N_{fixed}}{N}} \right)
$$

(Linearity Formula: Derivation)

- **E** Assume **N** cells on the detection area
- \blacksquare The probability of a cell to fire when hit by a photon is ε .
- We drop k Photons on the detection area.
- § We look what happens in one particular cell, say, cell 13:
	- The *probability* that *one* photon fires *that* cell is ε/N.
	- The prob. to *not* hit *that* cell by the one photon is 1-ε/N
	- The prob. to **not** hit *that* cell by *all k* photons is (1-ε/N)^k
	- Therefore the prob. to *hit* that cell by any of the k photon is $1-(1-\epsilon/N)^{k}$.
- § We add up this probability for all N cells. Therefore, the average number of hit cells is N times this value:

$$
\leq \text{Signal}(k) > \ = \ \mathbf{N} \left(\mathbf{1} - \left(\mathbf{1} - \frac{\epsilon}{N} \right)^k \right)
$$

For large N and small ε, this converges to $N\left(1 - \frac{\epsilon K}{N}\right)$

Temperature Dependence

- Breakdown voltage rises ~linear with temperature
	- This leads to a gain shift
	- Strong effect: Needs correction

Time Behavior

- § **Very fast!**
- Rise time <1ns (depends on readout circuit)
- Recovery time ~ 70ns
- At very fast recovery: After-pulsing / Crosstalk (?)

Noise / Dark Count Rate (DCR)

- § Thermally generated electrons ('leakage current') can trigger avalanches
- Their # depends on depleted volume and thus of $\sqrt{\Delta V}$
- **Depends on temperature (low T** \rightarrow **low leakage current)**
- **Depends on gain (high gain** \rightarrow **higher trigger probability)**
- Typical DCR are \sim 100 KHz 1 MHz / mm²

Summary SiPM

Pros

- § High Sensitivity (higher QE than 'most' classical PMTs)
- Linear Signal (up to saturation limit)
- **Low Bias voltage**
- **Insensitive to magnetic field**
- § Small
- Cheap (?, not for large area)
- Short recovery time

Drawback:

- **Example 1 Larger dark noise wrt. PMT**
- Small electrical signal requires amplifier
- Requires control of temperature
Not discussed here

- § Noise in avalanche process
- § Crosstalk between pixels (an avalanche in one SPAD creates photons which trigger another SPAD)
- After-pulsing (similar, but delayed)
- **Timing jitter from SPAD to SPAD**
- **Homogeneity of parameters (overvoltage)**

 \blacksquare

NOVEL / FUTURE DEVICE VARIATIONS

New Development: Avalanche Drift Diode

- § Carriers first *drift laterally* to an amplification region
	- Device is sideward depleted

RUPRECHT-KARLS-**UNIVERSITÄT** HEIDELBERG

- Electrons first drift 'vertically' to potential minimum, then laterally
- Only small avalanche regions
- large area, full depletion \rightarrow very high PDE $> 80\%$
- Bad time resolution (drift time depends on position)
- High dark rate (large depleted volume, 'more than needed')

New Development: Vertikal, SiMPI' (@ HLL Munich)

- § Quench resistor is vertical to backside of device
	- Value is given by device area, wafer thickness, bulk resistivity
- p⁺ und n⁺ electrodes on array are also contacts
- Cells are isolated by depletion regions

- Requires very thin (50-100µm) wafers
- § Very high fill factor!
- Very simple technology (except thin wafer..)
- Backside contact ! \rightarrow Could flip readout chip

RIIPRECHT.KARIS **UNIVERSITÄT** HEIDELBERG

SiMPI Wafer

§ Pros

- Very high fill factor
- Simple technology, no Polysilicon required, coarse lithography \rightarrow high yield, low cost

§ Cons

- Vertical quench resistor - Depends on wafer thickness \rightarrow thin wafers for small SPAD - is a JFET \rightarrow rel. large recovery times
- Work in progress (@2012). Further improvements expected.

APPLICATIONS:

(CALORIMETRY), PET

Time Resolution with Crystals

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Silicon Detectors – Photo Detectors **COV** COV COVID-10 COVID

Application: Calorimeter

- Calorimeters measure the energy of particles
- These are stopped in an absorber (by electromagnetic and strong interactions)
- § Absorbers are often *scintillators* which produce light proportional to deposited energy
- **East Light must be detected**
	- In magnetic field
	- Fast
	- Many channels

RIIPRECHT.KARIS UNIVERSITÄT HEIDELBERG

Application: Tomography (PET)

- Detection of scintillation photons (von 511 keV γ)
- **Time resolution required**
	- For coincidence: some 5-10 ns
	- For time of flight: some 100 ps
- § Compact
- § Works in magnetic field (MRI)

Tomograghgeometrie mit 45 Detektormodulen

Positron Emission Tomography (PET)

Gamma Detection Module

■ We have built a very compact module for detection of 511 keV gammas:

Backside: SiPM Arrays

§ Challenging assembly!

Performance in 1:1 coupling

- CRT \sim 210 ps (@ 30°C) is State of the Art!
	- Note that this corresponds to a single channel sigma of ~65 ps!

Direct Time-of-Flight Measurements

Position Resolution

■ 8 x 8 SiPMs, crystals of 1.3 x 1.3 x 10mm³, Simple 2D Gauss fit.

main fraction of the signal triggers its neighbors. Silicon Detectors – Photo Detectors © P. Fischer, ziti, Uni Heidelberg, Seite 54

MAKING SIPMS POSITION SENSITIVE

- Define regions with different fraction of SPADs assigned to 2 outputs
- **Example 21 Linear 'SeSP' (Sensitivity Encoded SiPM)**

V. Schulz et al., Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI, Phys. Med. Biol. 58 (2013) 4733–4748

■ Extension to 2D device

§ Works in principle. BUT: Crystals must be placed very precisely…

Omidvari & Schulz: Characterization of SESP with 1-D and 2-D Encoding for high Resolution PET/MR, IEEE TNS, Vol. 62, No. 3, June 2015

■ Find more 'general' assignments of SPADs to readout channels ('colours')

RIIPRECHT.KARIS **UNIVERSITÄT** HEIDELBERG

■ Get a *corresponding* **reconstruction function** to find (x,y) from the 4 $S_{i,j}$.

Here:
$$
\overrightarrow{r}_{rek} = \sum_{i,j} S_{i,j} \overrightarrow{C}_{i,j}
$$
 (center of Gravity, CoG)

§ Note: Other functions & only 3 corners are possible!

ISiPM Idea

- Assign each SiPM cell to **one** of $N = 4$ corners (\blacksquare , \blacksquare , \blacksquare)
- § Do this such that the *local* density of cells matches the Weight Function(s)

'as good as possible'…

Algorithm to Obtain Cell Assignment

RUPRECHT-KARLS. **UNIVERSITÄT** HEIDELBERG

Larger Maps (100 × 100)

RIIPRECHT.KARIS **UNIVERSITÄT** HEIDELBERG

Systematic Reconstruction Error

- § *Discretized* weight function → *systematic* reconstruction errors
- Use square photon clusters ('crystals') for simple study

A: Systematic Reconstruction Error vs. Cluster Size

■ Example: ISiPM with 40 × 40 cells

Averaged over all (integer) cluster positions fully on SiPM (σ given in % of SiPM size)

Systematic Reconstruction Error vs. Cluster Size

- § How small crystals can we identify?
	- Crystals with pitch p can be identified if σ_{Err} « p

ISiPM Mapping is 'smoother' than 'Stripe' Mapping:

Resolutions [%] vs. Cluster Width [%] 12 **30 × 30 30 × 30** $\overline{2}$ 0 10 20 30 60 70 40 50 ٠o $\ll\,\gg\,\gg$ $\mathbb N$ $*$ and $*$ $N \times 1$ $*****$ $1 X X X X X X$ \mathbb{X} \mathbb{X} \mathbb{X} \mathbb{X} \mathbb{X} \mathbb{X} $**$ $**$ $**$ $*$ $1 X X X X X X$ ****** $\cancel{\ll}$ $\mathscr{A} \mathscr{A}$ $\frac{1}{2}$

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

IIPRECHT. KARIS **UNIVERSITÄT HEIDELBERG**

Putting all together: Flood Map Simulation

- Example for device simulation:
	- ISiPM with 100² cells (e.g. 7.4 mm²)
	- crystals of 12×12 cells (0.9 mm²)
	- Array of 7 × 7 crystals (tilted to show robustness)
	- Fire 250 random cells / crystal
	- noise per corner: 2 cells (rms)
- Circles \bigcirc show systematic, (known) offsets
- \blacksquare Hit is associated to closest \bigcirc
- 7% of hits are associated to wrong crystal (offset by 1)

Silicon Detectors – Photo Detectors © P. Fischer, ziti, Uni Heidelberg, Seite 71

MAKING REAL DEVICES…

Technology Limitations

With **one** available metal layer

- large capacitances, series resistance

- short circuit risk, crosstalk
- area loss

With **two** available metal layers

- + higher fill factor
- + less crosstalk

One Metal Layer Design

§ Fabricated at FBK, Trento, Italy

■ Frame Layout & Assignment by Hi

The First Test….

Silicon Detectors – Photo Detectors **COV** COV COV COVERSITY OF P. Fischer, ziti, Uni Heidelberg, Seite 76

Array of 2 mm Crystals

- No source (natural LYSO radioactivity, mix of many amplitudes.)
- § No cuts on data (energy, odd events)

§ Observation: Positions compressed to center

Array of 1.3 mm Crystals

10k events, integral, COG, *No* cuts.

- 1.3mm crystals can still be resolved on 7.4mm device with 100² cells
- § Note: Scope Trigger favors one corner!

A Better & Faster Setup

- § Use discrete ADCs & USB readout
- § 'Fair' trigger

1.0 mm LYSO Crystals

- § Flood map: Place source over array, plot reconstructed **COGs**
- **1 mm very clearly resolved** (~ 7.4mm active area)

Sub-mm Resolution and DOI

■ Stack 1mm crystals (very improvised, but it works!)

- 0.7mm distance clearly resolved !
- DOI ('Depth of Interaction') works !

■ Professor

- \blacksquare I tried…
-

Patentansprüche

■ After man^{1.} Ortsempfindlicher Detektor zur Detektion von
Photonen- oder Teilchenverteilungen, mit - einer Detektor-Empfangsfläche (1), die durch mehrere Detektorzellen (2) aus einzelnen Detektorelementen gebildet ist, und - einer Anzahl N an Auslesekanälen (5) für die Detektorzellen (2), die geringer als die Anzahl an Detektorzellen (2) ist, - wobei jede für die Detektion genutzte Detektorzelle (2) wenigstens einem der Auslesekanäle (5) zugeordnet und mit diesem verbunden ist, und - die Zuordnung der Detektorzellen (2) zu den Auslesekanälen (5) derart gewählt ist, dass aus Signalen der Auslesekanäle (5) die Position eines Schwerpunktes einer auf die Detektor-Empfangsfläche (1) auftreffenden Photonen- oder Teilchenverteilung bestimmt werden kann.

This restriction was a big mistake

RIIPRECHT.KARIS **UNIVERSITÄT HEIDELBERG**

Competition: Linear Graded SiPM (LG-SiPM)

- § Collect row/column contributions with (equal) *resistors* in pixels
- Generate linear gradients in x- and y in periphery
- § More complicated, but one pixel ChD already is reconstructed correctly! Cha

A. Gola*, A. Ferri, A. Tarolli, N. Zorzi, C. Piemonte:*

A Novel Approach to Position-Sensitive Silicon Photomultipliers: First Results

SIPM IN A CMOS TECHNOLOGY

The Fraunhofer SPAD process

§ Fraunhofer Institute IMS (Duisburg, Germany) has modified their in-house 0.35µm 4M2P-CMOS technology to obtain good SPADs

- Very encouraging properties were published:
	- Low Dark Count Rate ('DCR') $($ ~ 20kcps / mm² $@$ RT)
	- Good uniformity (~ 95% SPADs have similar DCR)
	- Low after pulsing (< 1%)
	- Good Photon Detection Efficiency ('PDE')(~ 40% for blue light)

SPAD Readout: 4 Options

Pixel Architecture

(slightly simplified schematic)

Chip Photo: Pixel Array

Silicon Detectors – Photo Detectors **COV** COVE COVE COVER COVER COVER Seite 90

Chip Photo: Top

Silicon Detectors – Photo Detectors **Contract Contract Contr**

Overall Architecture IPD1

- Design bug: x-addressing in matrix forgotten \rightarrow can only kill full rows
- All other tested parts work as expected

Overall Architecture IPD2

First test setup

- § 'quick & dirty': recycle FPGA board from our group….
- no cooling \rightarrow run mostly @ ~30°C
- § 'low' data rate (USB2.0)

'First Light'…

- Cover Chip with Alu-Mask with rectangular hole
- **Illuminate Chip during integration window**

Silicon Detectors – Photo Detectors **Contract Contract Contr**

RIIPRECHT.KARIS UNIVERSITÄT HEIDELBERG

DCR at Various Overvoltages

• Overvoltage = $OV = 4,5,6,7$ V, Measured @ 20°C (DCR is lower when cold)

■ DCR is referred to useable **SPAD** area (inner border of M1 shield)

RIIPRECHT. KARIS **UNIVERSITÄT HEIDELBERG**

Multiplicity Rates

- § Chip generates a *true* multiplicity of ColumnOR signals (i.e. groups of 88)
- § Rates depend *strongly* on Coincidence *time window* (set by pixel monoflop)

Rates in Hz, $T \sim 30^{\circ}$ C, OV = 4.0 V

- **No** pixels killed in this measurement
- Can reach very low noise trigger rates of ~Hz!
- Measurement agrees quite well with theory
- § Issue: dispersion in coincidence times (improved in IDP2)

Setup & Measurements by Manfred Kirchgessner and Michael Schork

RIIPRECHT.KARIS **UNIVERSITÄT** HEIDELBERG

Laser Scan: 2D Response

- Scan over region of 1.5 \times 2.0 pixels in 30 \times 40 steps (\sim 2.8 µm / Step)
- Plot # hits in one pixel for 3000 laser shots ($\sim 4V$ overvoltage, $I_{SPAD} \sim 6\mu A$)
	- Notes: still need to calibrate x-y-steps better & run @ lower intensitiy..

RIIPRECHT. KARIS UNIVERSITÄT HEIDELBERG

LYSO Arrays with VERY small pitches

- § Crystal Pitches: 0.33 / 0.48 / 0.88 mm, height = 10 mm
- 65µm thick 'Enhanced Specular Reflector' foils

LYSO Arrays with 0.48 mm pitch (!)

- Measured at \sim 30 $^{\circ}$ C, OV = 3 V
- Trigger on Mult ≥ 4, 200 ns integration

Overlay of 20k events **Single events**

