2.1 Intrinsic Carrier Density

The intrinsic carrier density in silicon at room temperature is $1.01 \times 10^{10} \,\mathrm{cm}^{-3}$ ('latest values'). Low field mobilities of electrons and holes are ≈ 1400 and $\approx 480 \,\mathrm{cm}^2/(Vs)$, respectively.

- 1. How many free electrons / holes are present per cubic micrometer?
- 2. What would be the current flowing through a (ohmically connected) pixel with an area of $200 \times 200 \,\mu\text{m}^2$ in a 300 μm thick detector when applying 100 V ?
- 3. How many electrons/holes are that per nanosecond?

2.2 Thickness of Depletion Region

Consider an *n*-doped wafer of $300 \,\mu\text{m}$ thickness with a bulk resistivity of $2 \,\text{k}\Omega \,\text{cm}$. The top surface is p-implanted with 10^{15} atoms per cm³.

- 1. What is the bulk wafer doping in atoms per cm³ and atoms per μm^3 ?
- 2. What is the build-in voltage?
- 3. What additional voltage V_{depl} is required to deplete the wafer?
- 4. What is the field at the pn-junction and at the backside just at depletion?
- 5. How does the field at the backside increase with extra Over-voltage when the bias voltage is $V_{depl} + V_{over}$?

2.3 Drift in Depletion Region

We want to study in more detail how the charge carriers (electrons, holes) drift though the depletion region by taking into account the *varying* electrical field.

1. For the field we use the expression

$$E(x) = \frac{2V_{\text{depl}}(D-x)}{D^2} + \frac{V_{\text{over}}}{D},$$

where V_{depl} is the depletion voltage, V_{over} an additional overvoltage and D is the detector thickness. (The junction is at x = 0.)

- 2. Check that E(x) integrates up to $V_{depl} + V_{over}$.
- 3. Plot E(x).
- 4. The position of a drifting charge obviously depends on time. We want to calculate this x(t). Start with the drift equation $v(t) = \mu \cdot E(x(t))$ and use x(t) to express v(t). Solve the resulting differential equation. You may want to used a mathematical software package for this.

- 5. Fix the integration constant by the initial condition x(0) = 0. If you can, plot the particle position vs. time. You may also include the solution for the naive assumption of a constant field $E_{flat}(x) = (V_{depl} + V_{over})/D$.
- 6. What is the general expression for the time required to reach the backside at x = D?
- 7. What is the drift time for a depletion voltage of 100 V and an overvoltage of 50 V in a $D = 300 \,\mu\text{m}$ thick sensor?
- 8. If you can, plot the drift time as a function of over-voltage. Plot also the result for the naive assumption $E_{flat}(x)$.

2.4 Linear Depletion

For constant doping density, the depletion region in a diode grows with the square root of the (reverse) bias voltage. In this exercise you should find a (non-constant) doping profile such that the thickness of the depletion region T grows *linearly* with the applied voltage, i.e. such that $T[V] = k \cdot V$. We assume that the junction is at x = 0. To the left, we have 'infinite' p-doping. To the right, we assume a n-doping density following a power law

$$n(x) = Ax^{\alpha}.$$

- 1. Assume that the depletion region extends to x = T > 0, i.e. that the donors are depleted and a space charge corresponding to donor density exists. Calculate E(x) from Gauß's law (by integrating over space charge).
- 2. From E(x), calculate V(x), and in particular V(T).
- 3. Now find T(V). Check that you find the known result for constant doping.
- 4. First verify that if you require $T \propto \sqrt{V}$, you find constant doping.
- 5. What exponent α is required for $T \propto V$? Can this be implemented?