
Exercise 2 Silicon Sensors & Readout Electronics WS19/20

2.1 Intrinsic Carrier Density

The intrinsic carrier density in silicon at room temperature is 1.01× 1010 cm−3 (’latest values’).
Low field mobilities of electrons and holes are ≈ 1400 and ≈ 480 cm2/(V s), respectively.

1. How many free electrons / holes are present per cubic micrometer?

2. What would be the current flowing through a (ohmically connected) pixel with an area of
200× 200µm2 in a 300µm thick detector when applying 100 V ?

3. How many electrons/holes are that per nanosecond?

2.2 Thickness of Depletion Region

Consider an n-doped wafer of 300µm thickness with a bulk resistivity of 2 kΩ cm. The top surface
is p-implanted with 1015 atoms per cm3.

1. What is the bulk wafer doping in atoms per cm3 and atoms per µm3?

2. What is the build-in voltage?

3. What additional voltage Vdepl is required to deplete the wafer?

4. What is the field at the pn-junction and at the backside just at depletion?

5. How does the field at the backside increase with extra Over-voltage when the bias voltage
is Vdepl + Vover?

2.3 Drift in Depletion Region

We want to study in more detail how the charge carriers (electrons, holes) drift though the
depletion region by taking into account the varying electrical field.

1. For the field we use the expression

E(x) =
2Vdepl(D − x)

D2
+
Vover
D

,

where Vdepl is the depletion voltage, Vover an additional overvoltage and D is the detector
thickness. (The junction is at x = 0.)

2. Check that E(x) integrates up to Vdepl + Vover.

3. Plot E(x).

4. The position of a drifting charge obviously depends on time. We want to calculate this
x(t). Start with the drift equation v(t) = µ ·E(x(t)) and use x(t) to express v(t). Solve the
resulting differential equation. You may want to used a mathematical software package for
this.
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5. Fix the integration constant by the initial condition x(0) = 0. If you can, plot the particle
position vs. time. You may also include the solution for the naive assumption of a constant
field Eflat(x) = (Vdepl + Vover)/D.

6. What is the general expression for the time required to reach the backside at x = D?

7. What is the drift time for a depletion voltage of 100 V and an overvoltage of 50 V in a
D = 300µm thick sensor?

8. If you can, plot the drift time as a function of over-voltage. Plot also the result for the
naive assumption Eflat(x).

2.4 Linear Depletion

For constant doping densitiy, the depletion region in a diode grows with the square root of the
(reverse) bias voltage. In this exercise you should find a (non-constant) doping profile such that
the thickness of the depletion region T grows linearly with the applied voltage, i.e. such that
T [V ] = k · V . We assume that the junction is at x = 0. To the left, we have ’infinite’ p-doping.
To the right, we assume a n-doping density following a power law

n(x) = Axα.

1. Assume that the depletion region extends to x = T > 0, i.e. that the donors are depleted
and a space charge corresponding to donor density exists. Calculate E(x) from Gauß’s law
(by integrating over space charge).

2. From E(x), calculate V (x), and in particular V (T ).

3. Now find T (V ). Check that you find the known result for constant doping.

4. First verify that if you require T ∝
√
V , you find constant doping.

5. What exponent α is required for T ∝ V ? Can this be implemented?
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